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Executive summary 

One reason for inferring networks from data is to predict driver nodes: nodes that are opportunely placed in 

the network such that if their state changes, a large part of the network sees the effect. Typically, such driver 

nodes are ‘identified’ by using a network centrality algorithm applied to a network of correlations or of causal 

relationships. However, it remains uncertain whether this method offers a dependable approach to 

pinpointing driver nodes. Identifying driver nodes is not inherently a topological (centrality) issue, but rather, 

an interventional question. 

Addressing this question proves challenging in practice, as we cannot conduct actual interventions based on 

a specific dataset within our consortium. Therefore, this report presents a series of simulated interventions 

on an extensive range of hypothetical symptom-disease models. From these computational models, we 

produce synthetic datasets and subsequently compare various driver node inference algorithms with the 

ground truth. The ground truth is established by emulating an intervention on each node and ranking the 

nodes on the scale of how the rest of the network was impacted by this intervention. 

Our first set of results is negative. That is, using cross-sectional synthetic data generated from custom 

symptom-disease models, none of the conventional network centrality metrics for pairwise networks prove 

reliable in identifying driver nodes. This remains the case even when generalizing beyond pairwise networks 

by incorporating synergistic associations and considering less common centrality metrics for hypergraphs. 

Our second set of results is more encouraging. If the datasets were to consist of a rich collection of time-series 

data for all involved variables, it would be feasible to reliably infer driver nodes. Nonetheless, even in this ideal 

scenario, we find that classic network centrality metrics are still not reliable predictors. As a result, we 

developed our own centrality metric, IMI, based on measuring short-term fluctuations. This metric proves 

reliable, but its application hinges on the dataset comprising densely sampled time series. Thus, the inference 

of driver nodes in the datasets currently available within the consortium, or more broadly within 

epidemiological cohorts, cannot be done reliably. 

From these results, we delineate two main paths for future research. The first unresolved question is where 

the threshold lies between these two extremes (cross-sectional versus rich time-series) for it to become viable 

to identify driver nodes. It is clear that an extended number of follow-up waves is needed, but how many are 

adequate exactly? The second unresolved question is whether we can design a superior algorithm for 

identifying driver nodes based on hypergraphs (which incorporate synergistic associations). Given that the 

current set of centrality metrics for hypergraphs is not as diverse as for pairwise networks, the potential for 

developing new metrics may exist. 
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1. General introduction  

This report fulfils Deliverable 3.2, titled “Identification of driver nodes in disease networks (M42)”, which is 

focused on the corresponding Task 3.2, titled “Inference of driver nodes of disease networks (M13-M42).” 

A fundamental proposition in the To_Aition project is the assumption that the graphic representation of the 

comorbidity of Cardiovascular Disease (CVD) and Major Depression (MD) in the form of (hyper-)graphs not 

only illustrates the correlations between biomarkers and phenotypes, but also facilitates the prediction of 

driver nodes. These driver nodes, also known as leverage points, are nodes within a network that serve as 

strategic focal points for intervention, where the intended intervention would have a maximum impact on the 

network. This understanding is crucial when exploring preventative strategies. For example, a potential 

intervention method might involve 'blocking' pathways from one morbidity to another, thereby mitigating the 

overall burden. 

The data sets used in this project are primarily cross-sectional and include biomarkers (like lipidomics and 

metabolomics), phenotypic variables (such as CVD outcomes or mental health scores), and potential 

confounders. In several tasks within WP2 and WP3, we devised novel methodologies to construct various 

types of networks among these variables. The links between variables represent either (partial) correlations 

or deduced causal relationships. These connections may be pairwise (dyadic: between two variables) or 

synergistic (polyadic: involving multiple variables and a single variable). The core question this report aims to 

answer is: "Can driver nodes be reliably inferred from these networks?" 

In this deliverable, we present our findings from three different methodologies developed to address this 

question. Since the real data sets do not reveal a definitive truth regarding which variables are driver nodes, 

our initial step involves generating synthetic data sets using causal Bayesian Networks (BN; our 'toy models') 

with various characteristics. Each synthetic data set provides a ground truth, enabling us to determine whether 

a specific method for inferring driver nodes is effective. The primary idea is to gradually increase the 

complexity of these synthetic data sets to mimic a real data set in terms of size, value distribution, missingness, 

and correlations. Subsequently, the most effective driver node inference method is selected to be applied to 

the actual data set. 

This progressive search begins with the simplest synthetic data: no selection bias, additive noise, a limited 

number of variables, few possible values per variable, and no latent confounders. Ideally, this should present 

the 'easiest' scenario for inferring driver nodes; if we cannot reliably infer driver nodes from such simple 

scenarios, it is unlikely that we can do so in more complex, realistic scenarios. 

Regrettably, our studies, which we detail in the following sections, indicate that the network structures do not 

reliably predict driver nodes in our scenarios. More precisely, in the numerous different scenarios we explored, 
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we found virtually no correlation between a comprehensive list of node centrality metrics (which measure, in 

various ways, a node's central position in a given network) and the total impact of simulated interventions on 

a node. Our (negative) finding is robust against a range of methodological choices and network types.  

The work presented in this deliverable has in the meanwhile been published in peer reviewed journals: 

Elteren et al., 2022; https://doi.org/10.1016/j.physa.2022.126889 

Hourican et al., 2023; doi.org/10.3389/fsysb.2023.1155599 

Three more publications are currently in preparation or submitted. 

 

2. Exploring the effectiveness of Centrality Metrics in Identifying/ Predicting 

Influential Nodes in pairwise networks 

Centrality metrics are commonly used for identifying driver nodes in networks, but their effectiveness in 

capturing node importance in correlation networks is uncertain. This research aims to investigate the 

alignment between centrality metrics and intervention-induced significant nodes. We employ a systematic 

methodology involving a Bayesian model for simulation, hard interventions, computation of various centrality 

measures, correlation analysis, linear regression and nonlinear approaches to capture any relationship 

between centrality metrics and intervention output. We also explore the combination of centrality metrics 

and examine potential non-linear relationships using Machine Learning regression techniques.  

2.1. Introduction: 

Research Background. In a network, certain nodes play a critical role in shaping its dynamics and behavior. 

These influential nodes, often referred to as driver nodes, have a profound impact on the network's overall 

structure and functionality. Identifying these driver nodes is essential for understanding and manipulating 

network behavior effectively.  

Research Objective. The primary objective of this research is to assess the alignment between centrality 

metrics and intervention-induced significant nodes. By comparing the nodes identified as significant through 

interventions with those identified based on centrality measures, we aim to investigate the effectiveness of 

centrality metrics in capturing the importance of nodes within the network. 

2.2. Methods 

Bayesian Model Definition. To establish a causal framework for the network, we define a Bayesian model that 

represents the relationships between variables. This model serves as the basis for subsequent analyses. By 

specifying the causal relationships, we can capture the influences and dependencies among the nodes in the 

https://doi.org/10.1016/j.physa.2022.126889
https://doi.org/10.3389/fsysb.2023.1155599
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network. The Bayesian model allows us to estimate the parameters that govern these relationships and 

provides a solid foundation for further analysis.  

 

Table 1 

Bayesian model number of nodes: 40  number of edges: 70  
 

 

 

Simulation. After defining the Bayesian model, we proceed to simulate the behavior of the network based on 

this model. Through simulation, we generate data that closely resembles the dynamics of the network 

(number of samples: 100,000). This step involves generating multiple samples and assigning values to the 

variables according to their dependencies as defined in the Bayesian model. By simulating the network, we 

can study its behavior under various conditions and interventions, which enables us to gain a deeper 

understanding of its characteristics. 

The dynamics of the process can be described as follows: For every sample and node, a series of steps is 

performed. Initially, the algorithm examines the predecessors of the current node within the graph, wherein 

predecessors refer to nodes that possess edges directed towards the current node. If any predecessors exist, 

their corresponding values are evaluated. Specifically, the values of the predecessors for the current sample 

are retrieved. Subsequently, the algorithm checks whether any of the predecessor values are non-zero. If at 

least one predecessor exhibits a non-zero value, this implies the existence of a connection leading to the 

current node. Based on the presence or absence of these connections, the algorithm assigns a value to the 

current node. If there are predecessors with non-zero values, the current node's value is set to 1. However, if 

there are no such predecessors, the value is randomly assigned as either 0 or 1. This process is iteratively 

repeated for all nodes within the graph and for each sample with the corresponding values for each node in 

every sample. 

Intervention. To investigate the impact of interventions on the network, we perform interventions on each 

node individually. These interventions involve setting the value of a specific node to a desired value, 

representing a controlled change in the variable's value. We calculate the probability distribution of the target 

node based on the observed data when no specific evidence or intervention has been introduced and 

probability distribution/ intervention distribution of the target node following a specific intervention. The 

intervention involves setting the value of the target node to either 0 or 1. The intervention distribution 

represents the probability distribution of the target node under the specified intervention. 

Next, the Hellinger distance between the original distribution of each node before intervention and the 
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intervention distribution after the intervention. The Hellinger distance provides a measure of dissimilarity 

between probability distributions and allows us to quantify the impact of interventions on the network. 

Initial probability distribution and intervention probability distribution are conditional probability distributions 

(CPDs) specific to the target node/intervention node. These distributions are conditioned on the evidence or 

lack thereof, as well as the intervention that has been applied. 

Centrality Measure Calculation. After generating the data, we calculate the phi coefficient values and an 

association network is constructed using these coefficients.  

The phi coefficient (φ) is calculated using the following formula:  φ = √(χ^2 / n) 

where χ^2 represents the chi-squared statistic obtained from a contingency table of the variables, and n 

represents the total number of observations in the contingency table. The phi coefficient measures the 

strength of association between two categorical variables, with a value ranging from 0 (no association) to 1 

(complete association). 

To assess the importance and influence of individual nodes within the network, we calculate various centrality 

measures. These measures provide quantitative metrics that capture different aspects of node centrality and 

help us identify the most significant nodes in the network. 

Betweenness Centrality: This measure identifies nodes that act as crucial bridges or intermediaries in the 

network. Nodes with higher betweenness centrality have a significant impact on the flow of information or 

influence between other nodes. 

Closeness Centrality: This measure quantifies how close a node is to other nodes in the network. Nodes with 

higher closeness centrality have shorter average distances to other nodes and can efficiently spread 

information or influence within the network. 

Eigenvector Centrality: This measure takes into account both the centrality of a node and the centrality of its 

neighboring nodes. Nodes with higher eigenvector centrality are well-connected to other highly influential 

nodes, making them more influential themselves. 

PageRank is a centrality measure that originated from Google's web page ranking algorithm. It assesses the 

importance or significance of nodes within a network based on the number and quality of incoming links to 

those nodes. The underlying principle is that nodes with a higher number of high-quality incoming links are 

considered more important or influential within the network. 

Enhancing Analysis Robustness. To ensure reliable results and enhance the robustness of our analysis, the 

entire process was conducted 500 times. This iterative approach allowed us to collect centrality values and 

node impact across multiple runs/networks, thereby providing a more comprehensive understanding of the 
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network dynamics.  

2.2.1. Assessment  

Correlation Analysis and Linear Regression. In the correlation analysis, we calculate the correlation matrix 

between each individual centrality metric and the "driverness" measure, which quantifies the size of the 

node's impact. By examining the correlation coefficients, we assess the strength of the relationship between 

centrality metrics and impact measures. A significant correlation would indicate that a single centrality metric 

alone can effectively capture the importance and influence of nodes within the network. 

In addition to the correlation analysis, we also perform linear regression analysis. This allows us to investigate 

the extent to which centrality metrics can predict the impact measures. By fitting a linear regression model, 

we can estimate the coefficients of the centrality metrics and assess their statistical significance in predicting 

the "driverness" of nodes. This analysis provides further insights into the predictive power of individual 

centrality metrics. 

Combination of Centrality Metrics and Linear Regression. In this step, we investigate the potential of 

combining multiple centrality metrics to enhance the prediction of driver nodes within the network. We 

employ linear regression analysis with all the centrality metrics as predictors to assess their collective 

predictive power in determining the "driverness" of nodes. By including all the centrality measures as 

predictors in the linear regression model, we aim to leverage the complementary information captured by 

each metric. The coefficients of the centrality metrics in the regression model provide insights into their 

individual contributions to predicting the impact measures. Furthermore, we evaluate the statistical 

significance of the coefficients to determine which centrality metrics are most influential in predicting driver 

nodes. 

This analysis allows us to assess whether a combination of centrality metrics improves the prediction accuracy 

compared to using individual metrics alone. If the combined centrality metrics exhibit a stronger relationship 

with the impact measures than any individual metric, it suggests that a collective approach provides a more 

comprehensive understanding of node significance within the network. 

Combination of Centrality Metrics and Nonlinear Regression. In order to explore the potential for a non-

linear relationship between centrality metrics and the impact measures, we employ Random Forest 

regression. These methods allow us to capture complex interactions and non-linear patterns that may exist 

between the combined centrality metrics and the "driverness" of nodes. By utilizing Random Forest 

regression, we aim to uncover any hidden non-linear relationships that may exist beyond the linear regression 

analysis. These techniques have the capability to capture intricate interactions and non-linearities, which 

could provide deeper insights into the predictive power of combined centrality metrics. 
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By employing Random Forest regression with the combined centrality metrics as predictors, we aim to gain a 

comprehensive understanding of the relationship between centrality and impact in a non-linear context.  

2.3. Results 

Correlation between Individual Centrality Metrics and Intervention. The correlation analysis was conducted 

to examine the relationship between individual centrality metrics and the intervention outcome, which 

quantifies the impact of nodes. Pearson correlation, Spearman correlation, and Kendall correlation 

coefficients were calculated to assess the strength and direction of these relationships. However, the results 

showed no significant correlation between the centrality measures and the intervention outcome based on 

these measures. 

Figure 1. Respectively Pearson correlation, Spearman correlation, and Kendall correlation coefficients matrices of 

Individual Centrality Metrics and Intervention impact node. 
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Individual Centrality Measures as Predictor for Intervention Output. A comprehensive analysis was 

conducted to examine the relationship between the centrality measures and an intervention output variable. 

The dataset was divided into subsets, with each centrality measure serving as a predictor variable and the 

intervention output as the target variable. Linear regression models were trained on the training set and 

applied to the testing set for prediction. Performance evaluation metrics, including the normalized mean 

squared error (NMSE) and R-squared score, were calculated to assess the predictive capability of the models. 

The obtained results, including the optimal alpha, L1 ratio, NMSE, R2 score, intercept, and coefficient for each 

centrality measure, are presented in Table 2. This analysis provides valuable insights into the predictive power 

of different centrality measures concerning the intervention output, facilitating the assessment of their 

effectiveness in capturing the significance of nodes within the network. 

 

Table 2 

Centrality 

Measure 
Optimal Alpha L1 Ratio Normalized 

Mean Squared 

Error (NMSE) 

R2 Score Intercept Coefficient 

Degree 

Centrality 
2.160819e-05

  

0.5 0.978863 0.021137 0.128328 0.110977 

Betweenness 5.005945e-09 0.5 0.999871 0.000129 0.155269 38.199317 

Closeness 
 

 

1.934499e-05 0.5 0.979299 0.020701 0.129152  0.118996 

Eigenvector 1.321950e-05 0.5 0.977198 0.022802 0.121761  0.321905 

PageRank 2.167912e-06

  

0.5 0.976139  0.023861 0.109028  1.891030 

 

Complete Set of Centrality Measures as Predictors for Intervention Output: A Linear Approach. In this 

analysis, the entire set of available centrality measures was collectively employed as predictors. A linear 

regression model was trained on the training set and subsequently used to make predictions on the testing 

set. Performance evaluation metrics, such as the normalized mean squared error (NMSE) and R-squared score, 

were computed to assess the accuracy of the models. The results of this analysis, including the L1 ratio, NMSE, 

R2 score, and intercept, are presented in Table 3. Furthermore, the coefficients corresponding to each 

centrality measure are visualized in Figure, providing additional insights into their individual contributions to 

the prediction model. 
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Table 3 

L1 Ratio Normalized 

Mean Squared 

Error (NMSE) 

Root Mean 

Squared Error 

(RMSE) 

Mean Absolute 

Error (MAE) 
R2 Score Intercept 

0.5 0.97971  0.257885  0.223292 0.02029 0.117958 

 

 

Figure 2. Coefficients of Centrality measures 

 
. 

Complete Set of Centrality Measures as Predictors for Intervention Output: A Non- Linear Approach 

Using Mutual Information. To further explore the association between centrality metrics and the intervention 

outcome, mutual information was employed as an alternative measure of dependence. The mutual 

information captures the amount of information shared between two variables and can reveal non-linear 

associations. The mutual information matrix was visualized as a heatmap (data discretized using 

KBinsDiscretizer algorithm). 
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Figure 3. Overview of centrality measures and coefficients 

 
 

Random Forest Regression (RF). In this case, instead of using mutual information, we employed RF regression 

analysis to assess the association between centrality metrics and the intervention outcome. The evaluation 

metrics were calculated to evaluate the performance of the model. The feature importance values were then 

used to explore the relationship between the centrality metrics and the intervention outcome. In contrast to 

using mutual information, RF regression analysis provides a different perspective on the association between 

centrality metrics and the intervention outcome. It considers the predictive power of each metric based on 

the chosen evaluation metrics such as normalized mean squared error, root mean squared error, mean 

absolute error, and R2 score. 

 

Table 4 

Normalized Mean 

Squared Error (NMSE) 
Root Mean Squared 

Error (RMSE) 
Mean Absolute Error 

(MAE) 
R2 Score 

1.104 0.27  0.21 -0.104 
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Figure 4. Feature importance: The values indicate the relative importance of each feature in the model. 

 

2.4. Discussion  

The aim of this study was to evaluate the effectiveness of centrality metrics in identifying the significance of 

nodes within correlation networks. Our systematic methodology employed Bayesian modeling, interventions, 

centrality measure computation, correlation analysis, linear regression, and non-linear approaches utilizing 

machine learning regression techniques. 

Our analysis found no significant correlation between individual centrality measures and intervention 

outcomes. This suggests that common centrality metrics, such as betweenness centrality, proximity centrality, 

eigenvector centrality, and PageRank, might not accurately represent the impact of nodes in correlation 

networks. Moreover, linear regression analyses using individual centrality measures as predictors of 

intervention outcomes failed to yield strong predictive results. The coefficients of each centrality measure 

were statistically insignificant. However, when using a linear regression model with the full set of centrality 

metrics as predictors, we observed a marginal improvement in prediction accuracy. The combined centrality 

metrics, according to the R-squared score, accounted for a small portion of the variability in intervention 

outcomes. While the coefficients for individual centrality metrics were statistically significant, their 

magnitudes were modest. Thus, although aggregated data from multiple centrality metrics can offer some 

insight into node relevance, the overall predictive power remains limited. 

We also examined potential non-linear relationships using mutual information and random forest regression 

techniques. Neither method, however, revealed significant correlations or significantly improved prediction 
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accuracy. These results suggest that complex relationships and non-linear patterns may not hold significant 

influence. Our findings underscore the limitations of traditional centrality measures in identifying and 

predicting influential nodes in correlation networks. Despite the widespread use of centrality measures in 

various network studies, their efficacy in correlation networks remains unclear. Future research could explore 

alternative network metrics or develop new methodologies to quantify node relevance in correlation 

networks. 

It's crucial to note that our conclusions are based on the methodologies and data used in this study. The 

effectiveness of centrality metrics in identifying key nodes can vary, depending on network characteristics and 

research context. Consequently, more research, coupled with validation using diverse datasets and network 

structures, is needed to deepen our understanding of the utility of centrality metrics in correlation networks. 

In conclusion, this study illuminates the constraints of centrality metrics in signifying node importance in 

correlation networks. The findings suggest that centrality measures may not independently identify influential 

nodes, and their predictive capability in correlation networks is limited. Further research is required to explore 

additional measures and methodologies, enhancing our understanding of node relevance in correlation 

networks. 

3. Identifying driver nodes based on higher-order associations (hypergraphs)  

3.1. Preamble 

The previous Section we established that it not possible to reliably infer driver nodes based on networks of 

pairwise relationships (from one node to one other node). To see if generalizing the type of relationships from 

purely pairwise to higher order, we will now proceed to investigate driver node identification is achievable 

when applied to higher order associations, using a bespoke toy model which contains a mix of synergistic 

interactions (triplets) and pairwise interactions (Fig. 5). We show that, a argued in a recent published 

perspective article [doi.org/10.3389/fsysb.2023.1155599], it is paramount to include synergistic interactions 

when reconstructing networks. That is, the result of using ‘classic’ methods to reconstruct the ground truth 

network misses quite some interactions and results in three disconnected components, whereas the ground 

truth is actually a single connected component. This is exemplified in Figure 5, whereby the left-hand network 

of Fig. 5 is based on a synthetic data set is shown on the right-hand side of Fig. 5. Thus, including synergistic 

interactions is predicted to lead to better reconstructions, which in the context of this deliverable, should 

thereby lead to better predictions of driver nodes. For this reason, in this Section we will explore exactly that. 

 

 

 

https://doi.org/10.3389/fsysb.2023.1155599
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Figure 5. Reconstructing a small synthetic network consisting of synergistic and pairwise interactions is impossible 

when only using pairwise edges. 

 

3.2. Introduction 

In disease networks, driver nodes refer to specific genes, proteins or other biological entities that are highly 

influential and play a crucial role in the development or progression of diseases. Driver nodes are typically 

identified based on their topological properties and impacts on other nodes and the whole system, 

corresponding to structural and dynamical methods, respectively. Centrality measures are commonly used as 

structural methods to quantify the importance or influence of nodes, while central nodes are unnecessarily 

driver nodes in terms of their complex functionality. In this research, we use dynamical methods that analyze 

the influence of nodes on the networks’ dynamics by simulating network dynamics and observing the impact 

of node perturbations. Nodes that significantly alter the dynamics or have a strong impact on other nodes are 

defined as driver nodes. By identifying and understanding the driver nodes, we can gain insights into the key 

biomarkers and regulatory mechanisms driving the disease. 

However, directly quantifying nodes’ influence in huge disease networks is challenging or even impossible due 

to their complex dynamics.  Here we first develop smaller and simpler toy models whose dynamics can be 

easily simulated and modeled and calculate each node’s influence on other nodes. Then the nodes’ influences 

are compared with their centralities to see which centrality measure can well predict node influence. As 

centrality measures are well-documented and easy to calculate, we can use that centrality metric to infer 

driver nodes in real disease networks. Additionally, when adding synergistic associations to such a network, a 

hypergraph is retrieved, another problem comes that only few centrality metrics for hypergraphs exist and on 

top of that are poorly understood. The goal of this subproject is to integrate synergistic associations into a 

hypergraph in a meaningful way, as well as assess existing and newly proposed centrality metrics based on 
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their ability to infer either predictive power or interventional impact. This should provide an important step 

to interpret driver node identification in a multivariate setting.  

Then the target is to check if any centrality measures can well predict node influence. For hypergraphs, five 

centrality measures, s-betweenness, s-closeness, s_eccentricity and s-harmonic (implemented in Hypernetx 

package) and clique eigenvector (implemented in xgi package) centrality measures are discussed in the 

analysis.  

• S-betweenness centrality: a centrality measure for an s-edge(node) subgraph of H based on shortest 

paths. Equals the betweenness centrality of vertices in the edge(node) s-linegraph.  

• S-closeness centrality: the closeness centrality of vertices in the edge(node) s-linegraph. 

• eccentricity centrality: the length of the longest shortest path from a node to every other node in the 

s-linegraph. 

• S-harmonic centrality: A centrality measure for an s-edge subgraph of H. A value equal to 1 means the 

s-edge intersects every other s-edge in H. 

• Clique eigenvector centrality: the clique motif eigenvector centrality of a hypergraph. 

• H-eigenvector centrality: the H-eigenvector centrality of a uniform hypergraph. 

A linegraph is a graph in which each vertex in the s-line graph represents a hyperedge with at 

least s vertices in the hypergraph, and two vertices are linked in the s-line graph if their corresponding 

hyperedges intersect in at least s vertices in the hypergraph.  

3.3. Methods 

To accomplish the above objectives, we begin by designing an algorithm capable of randomly generating 

directed acyclic hypergraphs (DAGs). In these hypergraphs, each target node is limited to being an output of 

hyperedges only once. We utilize different types of logic gates to specify the dynamics of the hypergraph. For 

pairwise edges, 'IS' or 'NOT' gates are randomly chosen, while 'AND,' 'OR,' or 'XOR' gates are randomly 

assigned to hyperedges. Once the hypergraph dynamics are defined, the states of nodes can be determined 

using Bernoulli trials. To assess node influence, we identify influence paths of the node first based on the 

hypergraph structure, then intervene the node by changing the probability of observing 1 when doing the 

Bernoulli trials. Based on the influence paths, we can identify the nodes that are influenced by the intervention 

and update their states accordingly. To quantify the impact of the intervention on the affected nodes, we 

calculate the Hellinger distance. This distance measure captures the difference between the pre-intervention 

and post-intervention probability distributions of the node states. After computing the Hellinger distances for 

each affected node, we can determine the total impact of the node on the entire system by summing up these 
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distances. This cumulative impact provides an assessment of how significantly the node affects the overall 

dynamics of the system. 

Figure 6 presents an illustration of a randomly generated hypergraph. The dynamics of the hypergraph are 

defined by assigning logic gates to each edge and hyperedge through a random process. Once the dynamics 

are established, we proceed to evaluate the node impact using the aforementioned method. To determine 

the centrality of each node within the hypergraph, we utilize published centrality measures. This analysis is 

conducted on 20 randomly generated hypergraphs, and the impact and centralities from all nodes in these 

hypergraphs are combined. Since metrics such as node impact, s_betweenness, clique eigenvector, weighted 

betweenness, weighted degree, and weighted eigenvector centralities exhibit histograms that roughly follow 

an exponential distribution, we apply a log transformation to these variables. Figure 7 displays the histograms 

of these metrics, some of which have undergone log transformation. To assess the predictive power of 

centrality measures in determining node impact, we calculate the correlation coefficient between node impact 

and various centrality measures after log transformation (Table 5). Additionally, scatter plots depicting the 

relationship between node impact and centrality measures are presented (Figure 8). The correlation 

coefficient serves as an indicator of the relationship between node impact and centrality measures. A high 

positive correlation suggests that centrality measures are effective predictors of node influence, while a low 

or negative correlation indicates a weak or potentially inverse relationship. 
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Figure 6. A randomly generated hypergraph.  

(20 edges and hyperedges, 37 nodes in total, max. order 5) 

 

 

Table 5. Pearson’s correlation between log(node impact) and centrality measures after log transformation. 

 

Ln(s_bet-

weenness) 

S_close-

ness 

S_eccen-

tricity 

S-

harmonic 

Ln(clique 

eigenvector) 

Ln(weighted 

betweenness) 

Weighted 

closeness 

Ln(weighted 

degree) 

Ln(weighted 

eigenvector) 

0.11 0.13 -0.07 0.18 0.15 0.09 0.17 0.16 0.13 
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Figure 7. Histogram of node impact and centrality measures after log transformation 
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Figure 8. Node impact vs. centrality measures after log transformation 

 

 

By repeating the analysis for 500 randomly generated hypergraphs, we obtain 500 correlation coefficient 

values between node impact and centrality measures after transformation. This approach allows us to assess 

the consistency and variability of the relationship between node impact and centrality measures across 
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different hypergraph instances. We plot the boxplot and violin plots for these 500 correlation coefficients. Fig. 

9 shows that the correlation between node impact and s-eccentricity is explicitly lower than that with other 

centrality measures. The finding indicates that compared to s-eccentricity, other studied centrality measures 

can better predict node impact. Among them, the higher median value of clique eigenvector centrality 

suggests a bit higher predictive power of the centrality compared to other centralities. In addition, the taller 

boxplot for clique and weighted eigenvector centralities means larger range of correlation values between the 

centrality and node impact with log transformation, implying a less stable predictive power of the centrality 

in predicting node impact. 

Figure 9. Box plot of correlation coefficients between node impact and centrality measures with log transformation 
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We also employ random forest regression (RFR) to assess the relationship between node impact and centrality 

measures and analyze their feature importance in predicting node impact (see Fig. 10).  It demonstrates that 

weighted degree, s-harmonic and clique eigenvector centralities can predict better node impact compared to 

other measures. 

 

Table 6. Metrics for prediction evaluation 

Mean squared 

error (MSE) 

Mean absolute 

error (MAE) 
R2 score 

1.13 0.78 0.12 

 

Mean Squared Error (MSE): MSE represents the average difference between the predicted values and real 

values. The small NMSE indicates small average error of prediction for target variable.  

Mean Absolute Error (MAE): MAE represents the average absolute difference between the predicted and 

actual values. The lower MAE indicates that the model's predictions have a smaller average absolute error. 

R2 Score: R2 score represents the proportion of the variance in the target variable that can be explained by 

the model. A negative R2 score suggests that the model is performing worse than a model that predicts the 

mean value of the target variable. A positive R2 score closer to 1 indicates a better fit. 

Figure 10. Centrality importance in predicting node impact from RFR (some after log transformation). 

 

3.4. Conclusion 

Using synthetic data in which the ‘ground truth’ can be objectively established, we could determine that our 

hypothesis that data models that include synergistic interactions does not lead to better predictions of driver 

nodes. 
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4. Dynamic importance of network nodes is poorly predicted by static structural 

features. 
4.1. Preamble 

In the previous sections we have seen that, based on Bayesian Networks that generate cross-sectional 

synthetic data, the prediction of driver nodes is ineffective. Here we turn to a different data-generating 

mechanism: a specific type of Glauber dynamics, called the kinetic Ising spin model. This model is capable of 

generating time-series data. The question in this section is two-fold: (1) is it possible to identify the driver 

nodes based on static network features, now that the network describes a different type of model; and (2) is 

it possible to identify the driver node based on rich time-series data? The second question is important as a 

dot on the horizon: if one would have access to very rich longitudinal data, would that allow identification of 

driver nodes? 

To answer these questions, we simulate the model on randomly generated networks as well as one real-world 

weighted network (psychometrics data set). The dataset, inferred from relatively rich time-series, contains 

self-reported variables that are relevant to major depression, such as feelings of sadness, bereavement, and 

sleeping quality.  The dynamic impact of nodes is assessed by causally intervening on node state probabilities 

and measuring the effect on the systemic dynamics. The results show that structural features such as network 

centrality or connectedness are actually poor predictors of the dynamical impact of a node on the rest of the 

network.  

A solution is however offered in the form of an information theoretical measure named integrated mutual 

information. The metric is able to accurately predict the driver node in networks based on observational data 

of non-intervened dynamics. We conclude that the driver node(s) in networks are not necessarily the most 

well-connected or central nodes. Indeed, the common assumption of network structural features being 

proportional to dynamical importance turns out to be false. Consequently, great care should be taken when 

deriving dynamical importance from network data alone. These results highlight the need for novel inference 

methods that take both structure and dynamics into account.  

An extended report of this study has been published in Physica A: Statistical Mechanics and its Applications 

(https://doi.org/10.1016/j.physa.2022.126889). For this deliverable, references and referral to supplemental 

material have been limited to the essentials, and for a complete account the reviewer may consult the 

published manuscript.  

4.2. Introduction 

The dynamic importance of a node varies as a function of both the dynamics that exist on the network in 

https://doi.org/10.1016/j.physa.2022.126889
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addition to its structural connectedness. This effect was rigorously shown by Harush and colleagues 

[doi.org/10.1038/s41467-017-01916-3]. In their study, the dynamic processes were varied while keeping the 

network structure the same. Both random generated networks as well as real-world networks were studied. 

Nodal importance was computed based on the ‘‘information flow’’ through a node. The flow through a node 

had a non-linear relation between its structural connectedness and the type of dynamics present in the 

system. These results highlight the non-intuitive and non-trivial interplay of the structure of a system and 

dynamics between the nodes of a system. However, the results required full knowledge of the system, i.e. 

both the network structure and the dynamics of the system are required to estimate the node with the highest 

dynamic importance. For a real-world system having both the dynamics available and the underlying network 

structure may be difficult. In addition, in their study the network structure was deemed constant. It remains 

unclear whether the proposed flow would generalize to systems with varying network structure. In addition, 

the results were obtained from steady-state. For dynamical processes an out-of-equilibrium approach 

highlights how trajectories generate systemic behavior. What is needed are methods that can detect the 

highest dynamic importance of a node from observations directly without knowing or assuming the underlying 

network or causal structure among variables. 

A node’s dynamic (or causal) importance is traditionally inferred by means of interventions and 

counterfactuals [https://doi.org/10.1111/phpr.12095]. Through external interventions the behavior of the 

system may change. That is, an intervention on a part of the system causes a divergence of the system 

behavior proportional to its dynamic importance; high causal importance relates to a large change in the 

system behavior. It is common for studies to use causal interventions to apply so-called hard intervention 

strategies. In hard interventions a node is pinned to a state. This effectively removes all incoming connections 

to a node, removing all influences the system has on this node. The use of hard interventions is common in 

various disciplines such as gene-knockout experiments, epidemic spreading, network analysis and driver node 

identification. 

Applying external interventions to identify nodes with high dynamical importance, referred to as driver nodes, 

is challenging for three reasons. First, hard interventions may cause a change in systemic behavior that does 

not occur in the non-intervened behavior (e.g. see fig 11 ) or may be impossible in practice (e.g. requiring 

infinite resources: doi.org/10.1016/j.physrep.2016.06.004). This complicates the theory forming on what 

mechanisms underlie observed systemic behavior. Second, most approaches for causal inference assume that 

the causal interactions follow a particular structure without (local) loops (doi.org/10.3758/s13428-017-0862-

1). This assumption simplifies theoretical analysis and is in many cases justified under the assumption that 

causes precede their effects in time. However, this approach assumes that the underlying causal structure is 

known and or accessible. If the underlying causal structure is not known, it has to be inferred from data which 

prompts problems in terms of temporal resolution and scale. For example, in a causal process where 𝐴 → 𝐵 →

https://doi.org/10.1016/j.physrep.2016.06.004
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𝐶 → 𝐴, the cycle may be unrolled over time. This effectively removes cycles. However, this requires the data 

to support time resolution such that it reflects unrolled (non-cyclical) causal processes 

(doi.org/10.3758/s13428-017-0862-1). Cyclical causal structures do occur in real-world systems such as 

ecosystems, biological systems, gene-regulatory systems and so on. Importantly, for many of these systems 

determining the correct temporal scale for causal interactions is non-trivial. Consequently, it remains an open 

question on how to perform causal inference applying these in general for cyclical causal events. Thirdly, the 

underlying causal structure may not be known or difficult to determine (doi.org/10.1038/s41598-019-43033-

9). In addition, many dynamical systems are prohibited from analytical approaches to decompose each nodal 

dynamical importance directly due to the polyadic, often non-linear, interactions (doi.org/10.1038/s41598-

019-43033-9). 

For closed systems, it is possible to avoid these challenges to deduce the driver node by considering cross-

sectional time series and computing the correlation of each node with the entire system out-of-equilibrium 

and without lossy compression (DOI: 10.1073/pnas.1704663114). Here, a driver node is the element of the 

system that is correlated the most with the entire system as a function of time. It has the maximum dynamic 

(causal) impact when intervened upon across all nodes. By taking the entire system into account, any internal 

confounding information is implicitly accounted for; there cannot exist any other node with more dynamic 

importance than the node with the highest correlation as the system is closed and external confounding is 

excluded. 

Figure 11.  

(A) Driver node inference. Dynamics are simulated using kinetic Ising spin dynamics. Causal interventions (soft 
and hard) are shown in the left column. Structural metrics (betweenness, closeness, degree, eigenvector 
centrality) each produce different driver node estimates. Integrated mutual information predicts the driver 
node for soft causal interventions. High causal interventions produce different system dynamics (see B for an 
example) and different driver nodes. This figure shows that dynamics interact with structure to produce non-
trivial driver node estimates. In addition, causal intervention size (hard or soft) influences the observed system 
dynamics. (B) Effect of intervention size on system magnetization with kinetic Ising spin dynamics (see 2.1). 
Energy is added (gray arrow) to the nodal Hamiltonian of the blue node (). (top) Non-intervened system 
dynamics are shown with the distribution of the blue node (right). (middle) Soft intervention on node keeps 
similar dynamics as the non-intervened system dynamics. (bottom) Hard interventions yield profound 
different system dynamics compared to non-intervened dynamics. (C) Example of non-causal inflation of 
mutual information decay. The network structure is given by the graph inset; consisting of a system with 4 
nodes in which each node is binary variable. Node 0 has a 50/50 distribution, and all other nodes copy the 
state of its predecessor. Node 0 has the largest causal influence as it can influence the state of all other nodes 
in the system (over time). The information content of node 3 is biased; it stores the information from 0 but 
has no downstream causal effects. Yet, its information decay is similar to 1 which has one downstream node. 
The true driver node (0) has the largest information decay over time and is not confounded. 
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Shannon information theory offers profound advantages over previous approaches for defining a measure of 

dynamical importance of driver node on the behavior of all other nodes. Firstly, and most prominently, 

Shannon mutual information can quantify statistical associations among variables without bias to specific 

forms of association. In particular, it equals zero if and only if the full probability distribution of the system 

state remains exactly unchanged regardless of the state of the node. Second, mutual information does not 

require a priori knowledge of the representational base of the system. That is, it allows for direct comparison 

among different systems that may have different units of measurement such as currency, density of animals, 

voltage per surface area and so on. Finally, it is defined for both discrete-valued and real-valued state 

variables. 
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The concept of measuring the dynamic importance of a node through information flow is not new. 

Colloquially, information flows from process 𝑋 to process 𝑌 represents the existence of statistical coherence 

between the present information in 𝑌 and the past of 𝑋 not accounted for by the past of 𝑌. Various methods 

have been proposed in the past such as transfer entropy (doi.org/10.1016/j.compbiomed.2016.10.010). 

Although originally intended as a predictive measure, the notions of information and information flow can be 

extended to causal influence or dynamic importance. Previous research developed several measures and 

methods for determining how much information flow between two processes is truly causal; examples include 

(but not limited to) conditional mutual information under causal intervention, causation entropy, permutation 

conditional mutual information, time-delayed Shannon mutual information (e.g., doi.org/10.1038/s41598-

023-32762-7; DOI: 10.1103/PhysRevE.97.052216). 

These measures are commonly used to infer the information transfer between sets of nodes by possibly 

correcting for a third confounding variable (doi.org/10.3390/e22080854). That is, informational flows are used 

to determine how information is transferred or shared between pair or sets of variables. However, in polyadic 

settings most measures of information flow are prone to underestimate or overestimate nodal importance. 

Determining how much information flow is causal between source and sink variables in polyadic settings 

remains difficult due to the so-called synergetic and redundant information 

(doi.org/10.48550/arXiv.1602.01265) 

Instead of focusing on the open problem of full information decomposition among variables, we focus here 

on the amount of information that a node shares with the entire system. A driver node is expected to have a 

corresponding high information flow from it to the system. We introduce a novel metric named integrated 

mutual information (IMI) based on time-delayed Shannon mutual information with a node and the entire 

system over time that captures driver nodes with the highest causal impact in ergodic systems. Additionally, 

we avoid the problem of confounding information synergy with redundancy by avoiding conditional mutual 

information. The consequence of this is that we quantify only how much causal impact one single node has on 

the entire network. In other words, we will not be able to infer which parts of the network are impacted more 

than others; nor how exactly the causal influence percolates through the network. This is nevertheless 

sufficient for the purpose of this study. 

Using this approach it was previously shown analytically that the number of connections of a node does 

necessarily not scale monotonically with its dynamical importance in infinite-sized, locally-tree-like networks 

(i.e. networks without loops) (doi.org/10.1098/rsif.2013.0568). For those networks, nodes with high dynamic 

importance were not nodes with high degree (so-called hubs). Instead, the nodes with intermediate 

connectedness were identified with the highest dynamical importance. This study extends this prior research 

by numerically computing information flow in finite-sized, random networks, i.e. where small feedback loops 

https://doi.org/10.1016/j.compbiomed.2016.10.010
https://doi.org/10.1098/rsif.2013.0568
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cannot be ignored, and studies the relation between connectivity and the dynamical importance of nodes in 

such networks. 

The aim of the work in this chapter is to test the common (often implicit) hypothesis that the connectedness 

of a node is proportional to its dynamical importance. A node's dynamic importance is determined by 

simulating the (out-of-equilibrium) dynamics of a system under causal external interventions. The distance 

between the system state probability distributions with and without performing the intervention is used as a 

ground truth for a node's causal influence over time. The resulting causal impact score over time is compared 

with common network centrality metrics as well as our proposed information-based metric. 

In contrast to other studies, the proposed metrics in this study do not make assumptions on network structure 

or type of dynamics. Small networks are used (up to 12 nodes) for which each node has an associated discrete 

state whose dynamics is governed by a stochastic update rule in discrete time. Smaller network sizes have the 

of studying "network motifs" that are embedded in larger network structure; understanding causal flows of 

smaller structures may provide insights into larger systems consisting of a combination of smaller network 

structures. In addition, the use of small network sizes offers a numerical advantage for accurate estimation of 

causal and information measures. In total 16 Erdös-Rényi networks are generated (10 nodes), and one real-

world weighted network (12 nodes) obtained from (doi.org/10.1037/abn0000028). Temporal dynamics of the 

nodes are simulated using kinetic Ising spin dynamics with Glauber updating for the purpose of demonstrating 

a case of non-trivial relation between network connectivity and dynamic importance, but our approach easily 

generalizes to any other dynamics or networks generation model. 

The results show that nodes with generally nodes with high structural connectedness as measured by 

closeness, betweenness, eigenvector and degree centrality are not the driver node(s). Our novel metric, IMI, 

achieved significantly better performance in predicting the driver node for non-intervened dynamical systems. 

In addition, and most importantly, hard causal interventions lead to causal flows that differ from the non-

intervened dynamics. That is, as a function of external intervention, systemic behavior may result in 

"unnatural" system behavior that does not occur in the unperturbed system. The proposed metric IMI does 

not rely on the assumptions on dynamics, nor on assumptions on structural properties of the network. 

Therefore, the results of this study provide scientists of all fields with a novel, reliable and accurate metric for 

the identification of driver nodes. 

 

 

 

https://psycnet.apa.org/doi/10.1037/abn0000028
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4.3. Theoretical background 

4.3.1. Terminology 

In this paper, we consider a complex system as a set of discrete random variables 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛} with 

interaction structure 𝐸 = {(𝑠𝑖, 𝑠𝑘)|𝑠𝑖, 𝑠𝑘 ∈ 𝑆}, where each 𝑠𝑖 ∈ 𝑆 has an alphabet 𝐴. This is also known as a 

(discrete) dynamical network Please note that we use the term node and variable interchangeably referring 

to an element 𝑠𝑖 ∈ 𝑆. The system chooses its next state 𝑆𝑡 in discrete time with probability: 

𝑝(𝑆𝑡|𝑆𝑡−1, … , 𝑆𝑡0) = 𝑝(𝑆𝑡|𝑆𝑡−1), 

which is also known as a first-order Markov chain. More specifically, each discrete time step, a single variable 

𝑠𝑖 ∈ 𝑆 is chosen with uniform probability and updated. That is, 

 

𝑝(𝑆𝑡|𝑆𝑡−1, … , 𝑆𝑡0) = 𝑝(𝑆𝑡|𝑆𝑡−1) =∏𝑝

𝑗

(𝑠𝑗
𝑡|𝑆𝑡−1) = 𝑝(𝑠𝑖

𝑡|𝑆𝑡−1). 

For temporal dynamics, we adopt here the Metropolis-Hasting algorithm. By drawing a proposal state 𝑆𝑡+1 =

𝑋′ from current state 𝑆𝑡 = 𝑋 from a proposal distribution 𝑔(𝑋′|𝑋) and accepting the new state 𝑋′ with 

probability, 

𝐴(𝑆𝑡+1 = 𝑋′, 𝑆𝑡 = 𝑋) = min(1,
𝑝(𝑆𝑡+1 = 𝑋′)𝑔(𝑆𝑡+1 = 𝑋|𝑆𝑡 = 𝑋′)

𝑝(𝑆𝑡 = 𝑋)𝑔(𝑆𝑡+1 = 𝑋′|𝑆𝑡 = 𝑋)

= min (1,
𝑝(𝑠𝑖

𝑡+1 = 𝑥′)𝑔(𝑠𝑖
𝑡 = 𝑥|𝑠𝑖

𝑡 = 𝑥′)

𝑝(𝑠𝑖
𝑡+1 = 𝑥)𝑔(𝑠𝑖

𝑡 = 𝑥′|𝑠𝑖
𝑡 = 𝑥)

) ,

 

where 𝑥′ ∈ 𝐴. If the new state is not accepted, then the next state will be set to 𝑆𝑡+1 = 𝑋. As the next state 

𝑆𝑡+1 is determined through considering updating a single variable 𝑠𝑖 ∈ 𝑆, the next state 𝑋′ will be generated 

through the proposal state 𝑥′ drawn uniformly from the possible states 𝐴 such that 𝑔(𝑥′|𝑥) = 𝑔(𝑥|𝑥′) =

𝑔(𝑥′) =
1

|𝐴|
. This means that 

𝑔(𝑋′|𝑋)

𝑔(𝑋|𝑋′)
=

𝑔(𝑥′|𝑥)

𝑔(𝑥|𝑥′)
= 1. 

For our experiments, we use the kinetic Ising model which is thought to fall in the same universality class as 

various other complex behaviors, such as (directed) percolation, diffusion, and many extensions of the model 

have been used as a base for opinion dynamics, modeling neural behavior and so on. For demonstrating our 

primary claim that high network connectivity does not necessarily lead to high dynamical importance, a single 

dynamics suffices as counterexample. 

It is nevertheless important to emphasize that our proposed driver node inference method does not depend 

on the exact type of dynamics. That is, the choice for the kinetic Ising spin dynamics is arbitrary in that respect. 

Our methods only require that for a given dynamics the data-processing inequality is satisfied. More details 
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on the methods and its assumption will follow in below. 

The kinetic Ising model consists of binary variables dictated by a Gibbs distribution that interact through 

nearest neighbor interactions. A prominent property of the Ising model in higher dimensions (two or more) is 

the phase transition from an ordered phase to a disordered phase by increasing the noise parameter 𝛽. For 

finite systems, the kinetic Ising model shows a continuous phase transition from ordered to unordered system 

regime (fig. 12 B). The Metropolis-Hastings update rule specifically for the kinetic Ising model equals: 

 

𝑝(accept 𝑋′) =
𝑝(𝑋′)

𝑝(𝑋)
= {

1 if ℋ(𝑋′) −ℋ(𝑋) < 0

exp(−𝛽(ℋ(𝑋′) −ℋ(𝑋)) otherwise,
 

where ℋ(𝑆) is the system Hamiltonian defined as 

 

ℋ(𝑆) = −∑𝐽𝑖𝑗
𝑖,𝑗

𝑠𝑖𝑠𝑗 − ℎ𝑖𝑠𝑖. 

Here 𝛽 is the inverse temperature 
1

𝑘𝑏𝑇
 with Boltzmann constant 𝑘𝑏, 𝐽𝑖𝑗 is the interaction strength between 

variables 𝑠𝑖  and 𝑠𝑗; ℎ𝑖 represents external influence on node 𝑖. The matrix 𝐽 effectively represents the network 

of the system: an edge between 𝑠𝑖 , 𝑠𝑗 ∈ 𝑆 exists if |𝐽𝑖𝑗| > 0. The networks considered in this study are 

undirected networks, which means that 𝐽 is an |𝑆| × |𝑆| symmetric matrix. For the randomly generated 

networks the edges 𝐽𝑖𝑗 ∈ {0,1}; for the real network dataset the edge weights are positive and negative real 

numbers. 

The 𝛽 parameter can be seen as the (inverse) noise parameter in the system. Low values of 𝛽 will induce each 

node in the system to detach from the influence of its neighbors, i.e. the probability of finding a node in a 

state 𝑝(𝑠𝑖 = 𝑎), 𝑎 ∈ 𝐴 will tend to uniform distribution as 𝛽 → 0. In contrast, high values of 𝛽 increases the 

influence a neighbor of a node may have on determining the node's next state. 

4.3.2. Causal interventions and dynamic importance 

We call a node a driver node for a dynamical system when it has the largest causal impact on the system 

dynamics. In brief, we will determine a node's causal impact by simulating a transient intervention and 

subsequently quantifying the difference between the system dynamics under intervention and without 

intervention. We expect that the impact of the driver nodes will penetrate deeper into the system and remain 

present longer than for nodes with lower causal impact. Here, we define causal impact by means of external 

intervention on a node. The external causal intervention 𝜖 on node 𝑠𝑗 ∈ 𝑆 can be described as 
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𝑝𝑠𝑗′(𝑠𝑖
𝑡|𝑆𝑡−1) = 𝑝(𝑠𝑖

𝑡|𝑆𝑡−1) + 𝜖𝛿𝑖𝑗, 

where 𝛿𝑖𝑗  is the Kronecker-delta, and dim(𝜖) = |𝐴|. In addition, ∑ 𝜖𝑖
|𝐴|
𝑖=0 = 0 and ∑ |𝜖𝑖|

|𝐴|
𝑖=0 = 𝑐 for some 𝑐 ∈

(0,1]. Note only those 𝜖 are allowed that generate valid new probabilities, i.e. 0 ≤ 𝑝′ ≤ 1. 

Relative to some equilibrium distribution 𝑝(𝑆𝜏), the effect of intervention 𝜖 will result in a new system state 

equilibrium distribution 𝑝′(𝑆𝜏). Subsequently the intervention is removed at a random system state, after 

which the distribution of system states will gradually converge back to the original equilibrium. Nodes with 

higher dynamic importance will cause a larger difference in the system state probability distribution over time. 

Consequently, we quantify the causal impact of a node by integrating over time 𝑡 the difference in system 

state distribution from the moment the intervention is released (𝑡 = 𝜏). Since our model is discrete in time, 

the integral becomes a summation. Thus, we define the causal impact of node 𝑠𝑖 ∈ 𝑆 as 

 

𝛤(𝑠𝑖) =∑𝛾

∞

𝑡=𝜏

(𝑠𝑖
𝑡)𝛥𝑡

=∑∑𝐷𝐾𝐿
𝑠𝑗∈𝑆

∞

𝑡=𝜏

(𝑝′𝑠𝑖(𝑠𝑗
𝑡)| |𝑝(𝑠𝑗

𝑡))𝛥𝑡

 

where 𝐷𝐾𝐿 is the KL-divergence, and 𝛥𝑡 = 1 throughout the paper. KL-divergence 𝐷𝐾𝐿(𝑝| |𝑞) quantifies the 

difference between probability distributions and is non-negative, invariant under affine parameter 

transformation and zero when 𝑝 = 𝑞. For example, if 𝛤(𝑠𝑖) = 0 the intervention on nodes 𝑖 caused no 

difference in any state probabilities. 

The driver node can then readily be defined as argmax𝑠𝑖∈𝑆(𝛤
(𝑠𝑖)). A numerical implementation of driver node 

identification is given in section 4.4.7. 

In this study we allow the intervention to evolve for some time period 𝛥𝑡nudge = 𝜏 − 𝑡0 after which the nudge 

is removed (see 4.4.7 and fig. 12 C). The intervention will transiently bring the system out of equilibrium. For 

ergodic systems, the effect of the intervention will be lost from the system over time. Namely, 𝑃𝑠𝑖 ′(𝑆), ∀𝑠𝑖 will 

tend to equilibrium distribution 𝑃(𝑆) from 𝜏 on wards. The causal impact is computed relative to this 𝜏 (fig. 

12 C). As a consequence, 𝛤(𝑠𝑖) will be finite for systems under study here, but may diverge for non-ergodic 

systems. The duration 𝜏 needs to be set appropriately that the intervention is allowed to percolate through 

the system. Here we used 𝜏 = 15 for random networks consisting of 10 nodes and 𝜏 = 25 for the real-world 

weighted network consisting of 12 nodes. 
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The time prior to 𝜏 is used for computing the causal impact on a node as the intervention could be 

disproportional affected by the act of changing the node distribution. It does not accurately reflect the causal 

impact of the node on the rest of the system. Only the decay after 𝜏 would be proportional to the causal 

impact a node has on all other nodes. The causal impact is therefore computed based on the decay of the 

causal impact relative to 𝜏. 

4.3.3. Intervention size 

In experiments concerned with measuring causal flows in networks, often "hard" causal interventions are used 

to determine the causal impact of nodes. Hard causal interventions are those that (effectively) remove all 

inputs from a node. In contrast, soft interventions keep the existing causal inputs intact but add an additional 

causal effect to the dynamics of a variable. In general, the larger the added causal effect of the soft 

intervention, the more this intervention will `overpower' the existing causal effects and hence the more the 

soft intervention converges to a hard intervention. In non-linear dynamical systems the intervention size is 

crucial, since even small interventions can have large effects, especially in the presence of bifurcations. In 

order to characterize the system without intervention as much as possible, one should thus aim to intervene 

with a minimal (but still measurable) effect. To illustrate this further, consider the system depicted in fig. 11 

B, where each node is updated with Metropolis – Hastings rule. The figure shows the effect of intervention 

size on the observed system dynamics. Namely, when a hard intervention is used (bottom) the system 

magnetizes. In contrast, in the non-intervened system, the system magnetizes periodically, i.e. the system 

dynamics evolve with time periods of magnetization and metastable switches to the other side of the 

magnetization. Contrasting the non-intervened system (top plot) with the bottom plot (hard) intervention, 

shows how the metastable behavior disappears. Soft interventions (middle plot) maintain the meta-stable 

behavior of the system. 

There will always be a minimal intervention size for which there is a measurable (i.e. non-zero) causal effect, 

given a finite amount of data. The causal impact will be maximal for hard interventions. As the intervention 

size is decreased so will causal impact. We hypothesize that there exists a lower bound for the soft 

interventions for which there will be a measurable causal impact. This minimal intervention size is dependent 

on the system’s structure as well as the dynamics of the system and is difficult to determine a priori. Yet it is 

important to approach this minimum because if the intervention size is too large, then the intervened system 

dynamics will diverge from the non-intervened system dynamics, losing its representative capacity. Therefore, 

we estimate this minimum numerically, described further below. 

4.3.4. Intervention in kinetic Ising model 

In order to measure the causal intervention, transition probability intervention needs to be adjusted. For the 

kinetic Ising model, the transition probability can be modified by adding energy to the node which results in 
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the adjusted Hamiltonian  

 

ℋnudge 𝑠𝑘
(𝑆) = −∑𝐽𝑖𝑗

𝑖,𝑗

𝑠𝑖𝑠𝑗 −∑ℎ𝑖
𝑖

𝑠𝑖 − 𝜂𝑠𝑖𝛿𝑖𝑘 . 

That is, an energy term is added to the intervened node 𝑠𝑘 by letting it interact with an external `spin state' 𝜂. 

Both soft and hard interventions were used. For hard interventions (𝜂 → ∞) the nodal dynamics of the nudge 

node 𝑠𝑘 are no longer influenced by nearest neighbor interaction. That is, the node state for the intervened 

node 𝑠𝑗 will not change as a function of time. For soft interventions a grid-search was used with 𝜂 := {𝜂: 𝜂 =

0.55 + 𝑖, 𝑖 ∈ {1,… ,10}} to determine a minimal yet measurable intervention strength. Once determined the 

same 𝜂 was applied to each node in turn and this process is repeated for all networks in the experiments. 

4.3.5. Measuring information flow 

Each node in a dynamical system can be considered as an information storage unit. For example in social 

networks gossip can be considered as information one person possesses. Similarly, disease can be present in 

one city while being absent in another. Over time through interaction, this information stored in a node will 

percolate throughout the system while at the same time decaying due to noise. The longer the information of 

a node stays in the system, the longer it could affect the system dynamics. Therefore, dynamic impact of a 

node is upper-bounded by the amount of information a node shares with the entire system. 

How does one measure information stored in a node? A node 𝑠𝑖  dictated by stochastic and ergodic dynamics 

can be considered a random variable. In Shannon information theory information is quantified in bits, i.e. 

yes/no questions concerning the outcome of a random variable. The average information that a random 

variable can encode is called entropy and is defined as: 

𝐻(𝑠𝑖) = −∑ 𝑝

𝑠𝑖=𝑥

(𝑥)log𝑝(𝑥). 

Note all log are base 2 in this paper unless specified otherwise. 

Entropy can also be interpreted as the amount of uncertainty of a random variable. In the extremes the 

random variable either conveys no uncertainty (i.e. a node always assumes the same state), or is randomly 

chosen between all possible states (uniform distribution). For example, consider a coin flip. One may ask how 

much information does a single coin flip encode? If the coin is fair, i.e. there is equal probability of the outcome 

being heads or tails, the amount of questions needed to determine the outcome is exactly 1. In other words, 

a fair coin encodes 1 bit of information. However, when the coin is unfair the information encoded is less than 

one. In the extreme case where the coin always turns up heads, the entropy is exactly 0. 
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The information shared between a node state 𝑠𝑖  and a system state 𝑆 can be quantified by mutual information. 

Mutual information can be informally thought of as a non-linear correlation function which inherits its 

properties from the Kullback-Leibler divergence. Formally, mutual information quantifies the reduction in 

uncertainty of random variable 𝑋 by knowing the outcome of random variable 𝑌: 

 

𝐼(𝑋: 𝑌) = ∑ 𝑝

𝑥∈𝑋,𝑦∈𝑌

(𝑥, 𝑦)log
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)

= 𝐻(𝑋) − 𝐻(𝑋|𝑌),

 

where 𝑝(𝑥) and 𝑝(𝑦) are the marginals of 𝑝(𝑥, 𝑦) over 𝑋 and 𝑌 respectively, and 𝐻(𝑋|𝑌) is the conditional 

entropy of 𝑋. The conditional entropy 𝐻(𝑋|𝑌) is similar to the entropy; it quantifies the reduction in 

uncertainty of the outcome 𝑋 by knowing the outcome of 𝑌. Please note that the yes/no question 

interpretation even applies to continuous variables; although it may take an infinite amount of questions to 

determine the outcome of a continuous random variable. 

4.3.6. Mutual information and causality 

Under some contexts, mutual information can be interpreted as being causal. For example, for a Markovian, 

isolated system consisting of two nodes 𝑆 = {𝑠𝑖, 𝑠𝑗} where 𝑠𝑗 causally depends on the previous state of 𝑠𝑖, 

encoded by a conditional probability distribution. It can be readily shown that the causal impact 

(eqref:eq:causal_impact) of 𝑠𝑖  on 𝑠𝑗 then reduces to mutual information. In this study, the entire system is 

considered as a downstream node. Importantly, the system is assumed to be measured in its entirety: no 

confounding variables are allowed. Within this context, the node with the highest integrated mutual 

information contains more causal information than correlation information than any other node in the system. 

Since there cannot exist any other node with more mutual information over time by construction of the 

system, this node must be the driver node. For any other node the measured mutual information can be 

(significantly) conflated (fig 11 C). Note that for directed graphs, these methods will not work as by 

construction the highest mutual information may lead to wrongful identification of the driver node. 

Additionally, for directed graphs the arrow of time causes a different interpretation on what correlation with 

the driver node means in cases without unobserved variables. For 𝑡0 + 𝑡 where 𝑡 > 0, integrated mutual 

information may correspond to correlation information of a driver node sender, whereas for 𝑡 < 0, the mutual 

information relates to the correlation with a driver node sending information. The systems in this study, 

however, are systems without confounding possessing and undirected network structure. Consequently, 

information flows symmetrically across the interaction of two nodes and the driver node corresponds to the 

node with the highest integrated information. 
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4.3.7. Integrated mutual information 

In a network of nodes each causal relation (edge) is obviously not isolated, so confounding variables exist. 

Therefore, the mutual information between a node state and a future state 𝐼(𝑆𝑡0−𝑡; 𝑠𝑖
𝑡0) cannot be 

interpreted purely causal in general. Namely, this mutual information could in principle be created purely by 

another variable 𝑠𝑗
𝑡0−𝜔 influencing both 𝑠𝑖

𝑡0 and 𝑆𝑡0−𝑡, even if there exists no causal influence from 𝑠𝑡0  to any 

other variable. 

Assuming the network itself is isolated, the only node for which the mutual information with a future system 

state could not have been fully created by a confounding variable is the driver node. That is, the driver node 

has the largest mutual information with the future system state. If this were fully induced by a confounding 

variable, then a different node would have to have even larger mutual information with the same future 

system state. In addition, this must hold for all future system states. By definition of the driver node, this 

cannot be true under the condition that the system is isolated. 

This point is illustrated in Fig. 11 C. Note that for all other nodes, however, it is possible for its mutual 

information value to be inflated due to non-causal correlations. This may result to a non-zero mutual 

information 𝐼(𝑠𝑖
𝑡0−𝑡: 𝑠𝑗

𝑡) among the two variables even if they do not depend on each other in causal manner 

(Fig 11). Consequently, we define the integrated mutual information (IMI) for node 𝑠𝑖  as the driver node, i.e. 

the node with the largest causal impact over time. The information flow over time ∑ 𝐼∞
𝑡=𝑡0 (𝑠𝑖

𝑡0+𝑡|𝑆𝑡0)𝛥𝑡 is 

causal in closed systems lacking confounding variables (fig.11C), where 𝑆𝑡0 is the system state at some time 

𝑡0 and 𝑠𝑖
𝑡0−𝑡 is the state of a node 𝑡 away from that system state. At time 𝑡 = 0 the value equals 𝐼(𝑠𝑖

𝑡0; 𝑆𝑡0) =

𝐻(𝑠𝑖
𝑡) for any node. 

Here, undirected networks are considered. Due to detailed balance for undirected networks, there exists a 

time symmetry in terms of variable dynamics. This means that for the systems considered in this study 

𝐼(𝑠𝑖
𝑡0−𝑡; 𝑆0

𝑡) = 𝐼(𝑠𝑖
𝑡0+𝑡; 𝑆0

𝑡) (see appendix 8.2.2 in https://doi.org/10.1016/j.physa.2022.126889). It is 

computationally easier to compute 𝐼(𝑠𝑖
𝑡0+𝑡; 𝑆0

𝑡) rather than the reverse (see section. ref:sec:dist_est). For 

directed graphs, however, the meaning and interpretation of integrated mutual information changes 

depending on the direction in time it is computed (see appendix 8.2.2 in 

https://doi.org/10.1016/j.physa.2022.126889). This effect is outside the scope of the present study and will 

be the subject of future studies. For undirected graphs, the causal impact is time invariant and is equal forward 

and backward in time. 

 

https://doi.org/10.1016/j.physa.2022.126889
https://doi.org/10.1016/j.physa.2022.126889


 

 
40 

𝜇(𝑠𝑖) = ∑ 𝐼

∞

𝑡=𝑡0

(𝑠𝑖
𝑡0−𝑡; 𝑆𝑡0)𝛥𝑡, 

For all ergodic Markovian systems, the delayed mutual information 𝐼(𝑠𝑖
𝑡0−𝑡; 𝑆𝑡0) will always decay to zero as 

𝑡 → ∞ (doi.org/10.48550/arXiv.1602.01265) 

. This decay is monotonic, which follows from the data-processing inequality and states that information can 

never increase in Markov chains without external information injection (see appendix 8.1 in 

https://doi.org/10.1016/j.physa.2022.126889). The question is how fast this decay takes place for each node 

(fig. 11 C), and consequently how much informational impact the node will have on the system. 

Taking the entire system as a downstream `node', 𝐼(𝑆𝑡+1; 𝑠𝑖
𝑡) represents pure causal information flow for the 

driver node as long as there are no confounding variables. For the rest of the study, we will therefore use the 

notation 𝐼(𝑠𝑖
𝑡0+𝑡; 𝑆𝑡0). 

4.4. Methods and network data 

4.4.1. Network data 

Random networks. In total 16 Erdös-Rényi random networks were generated consisting of 10 nodes each. 

Each random network is generated by first drawing a random connection probability uniformly from [0,1], and 

then creating each possible undirected edge with probability 𝑟. Out of these 16 networks, ~82 percent had a 

single connected component (fig. 12). Each edge had unitary weight. 

Real-world network: psychosymptoms. In addition to the generated random networks, we also test a small 

weighted network inferred from real data. This network differs from the random networks in that it is 

weighted and reflecting interactions among variables as a consequence of a real-world process, as well as 

reflecting inferred interactions from real data. The network data originates from the Changing Lives of Older 

Couples (CLOC) and compared depressive symptoms assessed via the 11-item Center for Epidemologic Studies 

Depression Scale (CES-D) among those who lost their partner (N=241) with still-married control group (N=274) 

(https://doi.org/10.1037/abn0000028). Each of the CES-D items were binarized with the aid of a causal search 

algorithm using Ising model developed by and represented as a node with weighted connections. For more 

info on the procedure see doi.org/10.1038/srep05918 and https://doi.org/10.1037/abn0000028. The 11 CES-

D items are (abbreviated names used in the remainder of this text in brackets): `I felt depressed' (depr), `I felt 

that everything I did was an effort' (effort), `My sleep was restless' (sleep), ̀ I was happy' (happy)`, ̀ I felt lonely' 

(lonely), `People were unfriendly' (unfr), `I enjoyed life' (enjoy), `My appetite was poor' (appet), `I felt sad' 

(sad), `I felt that people disliked me' (dislike), and `I could not get going' (getgo). 

https://doi.org/10.1016/j.physa.2022.126889
https://psycnet.apa.org/doi/10.1037/abn0000028
https://psycnet.apa.org/doi/10.1037/abn0000028
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4.4.2. Numerical methods 

Magnetization matching. A prominent feature of the (kinetic) Ising model is the phase change that occurs as 

a function of noise (fig.12B). In this paper we tested whether the amount of noise would (i) affect which nodes 

becomes the driver node in the system, and (ii) whether the correct driver node could be predicted using 

either IMI or network centrality metrics. We tested three levels of noise (fig 12 B); a low noise level (80% of 

the maximum magnetization), a medium noise level (70%), and a high noise level (60%) were used. This 

magnetization matching was achieved by estimating the magnetization curve as a function of 𝛽−1 numerically. 

Figure 12.  

(A) Phase 1 initializes 10000 independent random Markov chains and equilibrated the chains for time steps. 
The state distribution is estimated at over the10000 chains. In phase 2 for system states conditional 
distributions are estimated for time-steps from which mutual information is estimated. (B) Illustration of 
temperature matching. The graph depicts the conceptual transition between an ordered state (aligned spins) 
to a disordered state for the kinetic Ising on complex networks. The noise level was matched to the 
magnetization ratio of the max magnetization. For increase in temperature the noise level increases. (C) 
Illustration of applied interventions in an undirected 3 state system (top right corner). Each node is nudged 
according to the equation cited above. The time prior to “pushes” the system dynamics out of equilibrium. 
From onwards the causal impact decays proportional to the causal impact a node has on the rest of the system. 
(D) Generated Erdös–Rényi networks. (left) Structure of each network, the number indicates the system id. 
(right)Number of triangles (feedback loops) for each system. 
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4.4.3. Estimating 𝒑(𝑺𝒕𝟎) and 𝒑(𝑺𝒕𝟎+𝒕|𝑺𝒕𝟎) 

For each noise level, $N=\nSamples$ independent Markov chains are run for simulation with 1000 steps (fig. 

13 A). Each chain was initialized with random state distribution over nodes. We are interested in out-of-

equilibrium dynamics. For the Ising model the node dynamics are symmetric in equilibrium, i.e. each node has 

maximum entropy. For any given trajectory, the time-scale for the system to move from a fully magnetized 

state, to the opposite magnetized state will take longer than the dynamics that are exerted on local time 

scales. For short time-scales nodes with higher degree be more affected by large scale changes in their 

environment than lower degree nodes. For larger time-scales high-degree nodes will be frozen, and do not 

reflect short-time scale dynamics. In light of this, the simulations are conducted by sampling one side of the 

magnetization. This has the added benefit that it reduces the sign of the intervention, i.e. interventions are 

made to introduce higher entropy in each node which depends on the average magnetization in the system. 
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Each simulation step executes the following: 

• Pick a node at random from the system with equal probability; 

• Compute energy using eq. eqref:eq:energy; 

• Flip the node state with probability eq. eqref:eq:hastings. 

• From this set, the equilibrium distribution over states 𝑝(𝑆𝑡0) was constructed in the form of sample 

of 𝑁 system states. 

For this sample of system states, Monte-Carlo methods are similarly used to construct the conditional 

𝑝(𝑠𝑖
𝑡0+𝑡|𝑆𝑡0). For each of the sample states 𝑆𝑖 ∈ 𝑆𝑡0, the procedure above was repeated 100000 times for 

100-time steps in the psychosymptoms and 30 time steps for the random generated networks. All numerical 

experiments were repeated 𝑛trials = 20 times to provide confidence intervals for the results in all nudge 

conditions and temperature settings (noise conditions). 

4.4.4. Time symmetry and mutual information 

Thusfar, the definition of causal impact and IMI is ambiguous to the whether 𝑡 is positive or negative. Namely, 

if the node state 𝑠𝑖
𝑡±1 is captured in forward in time or backward in time with respect to some state 𝑆𝑡. For 

undirected networks with Ising spin dynamics there exists time symmetry with respect to how causal influence 

flows through the network due to detailed balance (see appendix 8.2.2 in 

https://doi.org/10.1016/j.physa.2022.126889). However, for directed networks this is not the case. The 

results obtained here are obtained using forward simulation in time only. The detailed balance condition 

ensures that the results would be symmetric when simulating the system backwards in time. 

4.4.5. Area under the curve estimation 

The mutual information over time and KL-divergence over time were scaled for visual purposes in the range 

[0,1] per trial set. A double exponential, 𝑦 = 𝑎exp(−𝑏(𝑡 − 𝑐)) + 𝑑exp(−𝑒(𝑡 − 𝑓)), was fitted to estimate 

these curves and subsequently IMI (eq. eqref:eq:information_impact and eqref:eq:causal_impact) using least 

squares regression. The kernel showed to be a good fit as indicated by the low fit error. 

4.4.6. Sampling bias correction 

Empirical estimates for mutual information are inherently contaminated due to sampling bias. In order to 

correct this, Panzeri-Treves correction was applied. This method offers a good performance in terms of signal-

to-noise and computational complexity. 

4.4.7. Driver node prediction and precision quantification 

It is possible for two or more nodes to have exactly equal network structure features as well as node dynamics. 

https://doi.org/10.1016/j.physa.2022.126889
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For example, consider a ring structure where each node has the exact same connectivity and all nodes have 

the same dynamics. In this case each node must have the same causal effect, and it would be impossible to 

disentangle these nodes causally from one another. Similarly graphs that are similar, e.g. show high degree of 

structural similarity but are not isomorphic, this causal separation may prove difficult for finite samples in 

stochastic settings as was discussed in ref:sec:dist_est. Consequently, we applied a parametric bootstrap 

procedure to estimate driver node sets (algorithm eqref:alg:driver_set). 

Driver set estimation. The area under curve values, e.g. integrated mutual information and causal impact, 

were resampled to generate bootstrap distributions (see appendix 8.7 in 

https://doi.org/10.1016/j.physa.2022.126889). This creates a confidence interval for the integrated mutual 

information and causal impact. From these bootstrap distributions a driver node set is estimated (see 

algorithm of appendix 8.7 in https://doi.org/10.1016/j.physa.2022.126889). The bootstrap procedure 

constructs driver node set 𝛬 iteratively by comparing the overlap 𝜙 with of the bootstrap for each variable 

with the distribution of the estimated driver node. For all experiments 𝜙 = 0.5. The driver node distribution 

was taken as the bootstrap distribution with the highest mean. Variables will be included to the driver node 

set 𝛬 if the overlap between its bootstrap distribution 𝑖 and driver node bootstrap distribution 𝑗 was 𝜙𝑖𝑗 >

0.5. In total 𝑁 = 1𝑒4 bootstrap trial were constructed of size 𝑀 = 𝑛trials = 20; for each of the trials the 

average was computed. For each variables a Gaussian distribution was estimated over the 𝑁 bootstrap. This 

distribution was used for computing the overlap with the driver node distribution. 

The bootstrap procedure cannot be applied to the network centrality metrics as there exists only one 

centrality rank assignment per network structure. Therefore, the driver nodes as inferred by maximum 

centrality metrics is the set of nodes (𝛬) whose centrality metric (𝑓) equals this maximum value, i.e. 

𝛬𝑐𝑒𝑛𝑡 = argmax𝑓𝑐𝑒𝑛𝑡(𝑥) : = {𝑥 ∈ 𝑆: 𝑓𝑐𝑒𝑛𝑡(𝑠) ≤ 𝑓(𝑥)∀𝑠 ∈ 𝑆} 

where 𝑓 is the centrality function which assigns a real value to each node in the system. For degree centrality, 

𝑓𝑑𝑒𝑔(𝑎𝑖) =∑𝑎𝑖𝑗
𝑗

 

where 𝑎𝑖𝑗  is the weighted connectivity between node 𝑖 and 𝑗 in the adjacency matrix 𝐴 of the network. If 𝑎𝑖𝑗 >

0 node 𝑖 and 𝑗 are connected. In this study degree, betweenness, closeness or eigenvector centrality were 

used. (see appendix 8.6 in https://doi.org/10.1016/j.physa.2022.126889 for the formal definitions for the 

centrality measures). 

Ground truth comparison. The ground truth values are the driver node estimations for the causal impact 

bootstrap distribution. Each estimator also generated a driver node set estimation. That is for integrated 

mutual information, degree centrality, closeseness centrality, betweeness centrality, eigenvector centrality, 

https://doi.org/10.1016/j.physa.2022.126889
https://doi.org/10.1016/j.physa.2022.126889
https://doi.org/10.1016/j.physa.2022.126889
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the bootstrap distribution generates an estimated driver set. To evaluate the performance of these estimators, 

an overlap score was computed with the ground-truth (causal impact estimation) using the Jaccard similarity 

metric: 

𝐽 =
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
. 

A Jaccard score of 1 means perfect overlap, i.e. the driver node set identified by causal impact and predictor 

set by IMI or one of the centrality metrics are identical. Conversely, a Jaccard score of 0 means completely 

disjoint driver-sets. 

For every network, intervention size and temperature the similarity metric we computed the Jaccard score 

per predictor. Additionally, the relative performance ratio of the IMI predictor was evaluated by 

𝑅𝑐𝑒𝑛𝑡 = 𝐽𝐼𝑀𝐼 − 𝐽𝑐𝑒𝑛𝑡 

where 𝐽𝑐𝑒𝑛𝑡 is the Jaccard score of the structural metrics (betweenness, closeseness, betweeness, eigenvector 

centrality). This performance indicator falls within [-1, 1] range: A value of -1 would indicate that the centrality 

metric correctly identified the driver node set; a score of 0 would indicate equal performance for the driver 

node identification between a centrality metric and IMI; a score of 1 would indicate a correct identification of 

the driver node for IMI, but a false identification of the centrality metric. The ratios were bootstrapped (𝑁 =

100000) and tested for significance at 𝛼 = 0.01. The driver node inferred performance is bound between 

(0,∞). 

4.4.8. Software 

A general toolbox was developed for analyzing any discrete systems using IMI, e.g., Susceptible-Infected-

Recovered, Random Boolean networks. The core engine is written in 3.07a with python 3.9.4 and offers C/C++ 

level performance1, for more information see https://github.com/cvanelteren/information_impact. 

Figure 13.  

(A) Jaccard score per system (see Fig.12D for the various network structures) as a function of intervention size. 
Each row depicts an increase in noise indicated by the label on the right side of the plot. On average integrated 
mutual information is a better predictor for the driver node than the centrality metrics used in this study (see 
also Fig. 14). Additionally, centrality metric tends to become predictor for hard interventions (), whereas this 
is not the (generally) so for integrated mutual information. Hard interventions can cause different causal 
dynamics not present in unperturbed system dynamics (see B/C). Integrated mutual information is based on 
observations of the system. The Jaccard score indicates that integrated mutual information can infer driver 
nodes for unperturbed dynamics. (B) Example of typical experimental results. The figures highlight a selection 
from the generated random networks form A for the low noise condition. (top) The graph structure of the 

 

1 $\codebase$ 

https://github.com/cvanelteren/information_impact
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system and the mutual information decay curves (second from top). (Second bottom and bottom) Show the 
causal impact decay for soft intervention and hard intervention. The gray dotted line indicates where the 
nudge is removed from the system, the produces causal decay proportional to a node’s causal importance. 
For soft causal interventions the inferred driver node based on integrated mutual information (second from 
top) is predictive for the true causal driver node (second from bottom) with soft causal interventions. 
Importantly, the causal driver node may change as a function of the intervention size (second bottom vs 
bottom plot). The centrality metrics tend to not correctly identify the driver node (see C for an example). (C) 
Mutual information decay () (top) and causal impact (for minimal soft intervention (middle) and hard 
intervention (bottom). 
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4.5. Results 

4.5.1. Random network results 

Driver node inference accuracy is depicted in fig. 14 A for both IMI and the network centrality measures. Three 

crucial observations can be made from the Jaccard scores. First, for nearly all systems there exists an 

intervention size for which IMI obtains a Jaccard score of 1 (perfect true driver node inference), whereas this 

is not always the case for the centrality metrics, see e.g. system 3, 7, 15. Secondly, IMI is predictive nearly only 

for soft intervention sizes, i.e. intervention sizes smaller or of similar order of magnitude as the existing forces 

acting on nodes(i.e. their degree in the 𝐽 interaction matrix). In contrast, centrality metrics are mainly 

predictive for hard interventions. The statistical results reflect these observations (fig. 14 A and B). 

In figure 14 B average decay curves are shown for IMI (top) and different intervention sizes (middle) and hard 

interventions (bottom) for the systems 2, 5, 12. Their network structure is depicted in fig. 15 B (top). 

Comparing hard interventions (bottom) with a more moderate intervention strength (middle) in system 2, 

shows that the driver node can significantly differ depending on the intervention size applied to the system. 

The order of the causal importance is noticeably different for the minimal intervention 𝜂∗ versus the strong 

intervention 𝜂 = ∞ (middle and bottom plot in figure 15 B). 
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Figure 14.  

Bootstrap results for driver node inference score per intervention size and for all interventions and noise 
levels(B). A kernel density is fitted for each distribution and integrated over the interval [−1, 0]. An inference 
ratio of 1 indicates that IMI is better at predicting the driver node than the structural metric and vice versa for 
a score of 0. Significant intervals are indicated by an asterisk * (). Except for the hard interventions () 
intervention size IMI is a better predictor than any of the network structural features. 

 

4.5.2. Real-world network: psycho-symptoms results 

The psychosymptoms system reveals similar results to the random networks (fig. 16). Namely, for medium to 

high noise level IMI yielded significantly higher Jaccard scores than centrality metrics for low causal 

intervention (fig. 16 C/D, 𝑝 << 0.01), while not for hard interventions. In contrast, hard interventions yield 

different causal structures altogether which do not reflect non-intervened dynamics (fig. 16 A/B). For example, 

the true driver node under hard interventions identifies `dislike' (medium and high noise) to be the driver 

node (fig 16 A). Whereas for low causal intervention `sad' is identified as driver node (fig. 16 A). This implies 

that intervention itself has impact on what causal structure is observed and that the intervention can show 
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systemic behavior not present in the non-intervened system. The soft intervention of 𝜂 = 0.1 was too low to 

provide proper resolution for identification of driver nodes in the low noise setting (fig. 16A). Hard intervention 

in low noise condition did provide a different driver node than the soft intervention. The grid-search for 

optimal 𝜂∗ was insufficient for the psychosymptom network and should be investigated in future studies. 

In addition, the change in driver node observed in figure ref:fig:psycho A highlights one major flaw in centrality 

metrics: they cannot account for a change in driver nodes due to a change in dynamics. The implicit 

assumption on dynamics that each centrality metric holds provides only one estimate per network structure. 

In contrast, IMI does not depend on what mechanisms generate system dynamics. Instead, it uses the 

distribution dictated by these system dynamics which match the true driver nodes. 

Fried and colleagues postulated that `lonely' was the gateway from which information spreads through the 

network, i.e. bereavement was embodied mainly by `loneliness' which then percolated its effect to the other 

symptoms (doi.org/10.1037/abn0000028). Since the data was cross-sectional, the comparison with the results 

from this study relies on the assumption that binary dynamics are representative of the absence and presence 

of psychological symptoms. If correct, the results from this study give a causal perspective on the associative 

results from (doi.org/10.1037/abn0000028). e results from this study postulate that `depr', `lonely' and `sad' 

have similar causal effect for moderate to high thermal noise. 

It is important to emphasize that a quantification is given in terms of absolute effect size and not directed 

effects. This means that nudging for instance `sleep' has some effect 𝑋 on the psycho-symptom network, in 

what direction that effect is, or whether it has a positive or negative effect on the bereavement score / 

cognitive load of the patient is not clear, and should be the subject of future studies (see appendix 8.4 in 

https://doi.org/10.1016/j.physa.2022.126889). 

 

Figure 15.  

(A) Causal impact versus integrated mutual information for different noise levels and intervention sizes. The 
inferred driver node is indicated above each figure with a dot. For low noise level the numerical estimates 
were too noisy and driver estimation was inaccurate. For intermediate to high noise level, causal impact scale 
linearly with integrated mutual information for soft interventions. Causal driver node was wrongly predicted 
for hard interventions by integrated mutual information. Notice how the causal flows change as a function of 
intervention size (top versus bottom plot). (B) Driver node identification in real-world network of 
psychosymptoms for medium noise as a function network features (top 4 subplots) and integrated mutual 
information (middle), and true causal driver nodes per intervention size (bottom). Integrated mutual 
information correctly identified the driver node with soft interventions, but not for high interventions. Only 
betweenness centrality correctly identified the true driver node for high causal interventions. (C) Bootstrap 
distributions for driver node inference score as function of intervention size across noise levels. A score of 1 
indicates that integrated mutual information identified the driver node correctly, but the structural metric 
didn't, and vice versa for a score of -1. In red kernel density estimates are indicated and integrated over [-1, 
0]. The asterisk (*) indicates a significant better inference score for integrated mutual information (α<.01). 
Integrated mutual information was a better predictor than any of the network features for soft interventions. 

https://doi.org/10.1016/j.physa.2022.126889
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(D) Bootstrap distribution for driver node inference score as function of temperature and nudge size. The 
integrated mutual information was a significant better predictor across noise and intervention size (α<0.05 
indicated by *). 

 

 

Structural metrics can be considered as implicitly assuming a particular dynamic. For example, the eigenvector 

centrality has a clear analytical connection with linear dynamics, such as a simple diffusion process. 

Betweenness centrality on the other hand can be considered to assume that causation between nodes is 

transmitted mainly along the shortest paths between pairs of nodes (see appendix 8.6 in 

https://doi.org/10.1016/j.physa.2022.126889), such as in message or package routing. Finally, many more 

network centrality metrics have been developed based on specific dynamics, such as current and flow 

centrality measures. Thus, such network structural metrics could indeed be used, but a careful analysis of the 

dynamic equations is required to assess which centrality measure (if any) turns out appropriate. 

The results from this study show that high degree nodes with Ising spin dynamics tend to actually not be a 

driver node for small interventions. In this model it can be understood since high degree nodes exhibit "frozen" 

behavior; their large(r) number of neighbors effectively sum up to a constant and strong force towards the 

majority state. Consequently, a constant (soft) intervention will be relatively ineffective with hubs. For non-

intervened Ising dynamics, it makes intuitive sense that the dynamics are driven by the nodes which are 

neither "frozen" (hubs) nor are poorly connected (low-degree nodes), which is reflected by the soft 

https://doi.org/10.1016/j.physa.2022.126889
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intervention setting. This insight is specific to the Ising system but illustrates that the information flow and 

causal flow of a system is not merely determined by the connectedness of a node in the network. Rather, the 

connectedness of the entire system in addition to inter-node dynamics combined are crucially important for 

causal flows and driver node identification. 

The results further imply that for unperturbed dynamics structural metrics may not be predictive for 

determining the causal importance of nodes. Soft interventions revealed a different causal structure than hard 

interventions (fig. 15). For hard interventions, structural metrics do become predictive for causal importance 

for the networks studied here. However, the dynamics of these systems are shown to deviate from the non-

intervened dynamics, causing system dynamics that are not representative of the non-intervened system. This 

can be seen in the causal influence in figure 14 and 15 where the causal influence for hard interventions is 

opposite to soft causal interventions. Consequently, if the aim is to provide understanding to the information 

flows for non-intervened dynamics, then hard interventions are not preferred. 

In addition, the results imply that in order to achieve maximum impact for a fixed `intervention' budget 

(injected energy), choosing the high degree nodes is not necessarily optimal. The adjusted Hamiltonian 

(introduces a bias on low degree nodes. Here, a causal intervention was performed by adding fixed energy to 

the Hamiltonian. For fixed intervention size 𝜂 = 𝑐, the causal impact on the nodal distribution will be relatively 

higher for nodes with low degree than nodes with higher degree. Higher degree nodes may have higher causal 

effect in principle if the same probability mass is changed. However, moving the same probability mass scales 

non-linearly in kinetic Ising. For a limited `intervention budget' it is preferred to locate those elements of the 

system that reach maximal causal effect. 

For some systems, however, the inferred driver node never matched the true driver node(s) (e.g. system 8 in 

fig. 14). This could be due to two main reasons. First a grid-search was applied for the intervention size. It was 

argued that there would be a minimal intervention 𝜂∗ which would lead to a measurable effect. It is possible 

that the parameter space used here missed the intervention size that provided enough resolution to 

accurately determine the driver node(s). Second, the numerical procedure for driver node inference could be 

optimized. The overlap of distribution was set to 𝜙 = 0.5, to infer the driver node set 𝛬, to prevent false 

positives for driver node identification due to noise in observed system states. However, the choice of 

parameter was not optimized and could lead to ambiguous driver node inference. System 8 in particular was 

most nodes in the network had a similar connectivity pattern, and as such causal isomorphy occurs, i.e. the 

causal importance of a node is indistinguishable from any other node in the system. The bootstrap estimates 

led to high level but not perfect of overlap (see appendix 8.7 in https://doi.org/10.1016/j.physa.2022.126889). 

Consequently, if 𝜙 was set differently, the inferred driver nodes could be improved. In future studies, we aim 

to further look into what how this numerical procedure could be improved for inferring driver nodes in 

https://doi.org/10.1016/j.physa.2022.126889
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dynamical networks particularly for causal isomorphic nodes. 

4.5.3. Limitations 

The systems considered are discrete and ergodic. IMI assumes that the data-processing inequality holds for 

the system (section 4.3.7). The data-processing inequality in ergodic systems ensures that 𝐼(𝑠𝑖
𝑡0+𝑡; 𝑆𝑡0) 

monotonically approaches zeros as 𝑡 → ∞ (see appendix 8.1 in 

https://doi.org/10.1016/j.physa.2022.126889). As a consequence, IMI will always be finite for ergodic 

systems. For non-ergodic systems, the data-processing inequality can only guarantee that 𝐼(𝑠𝑖
𝑡0+𝑡; 𝑆𝑡0) never 

increases as a function of 𝑡. Namely, the data-processing inequality ensures that no local manipulation of 

information may increase the information content of a signal. This implies that as 𝑡 → ∞, IMI may not 

converge for nodes with non-zero baselines. For these non-ergodic systems, however, it may be possible 

determine the driver nodes by considering finite time-scales or subtracting the asymptotic 𝛾 value and 

reporting it separately. 

Furthermore, this study only considered information flows in undirected systems. For directed systems, the 

largest integrated mutual information may in fact not be the driver node due to correlation. In appendix 8.2 

(see https://doi.org/10.1016/j.physa.2022.126889) an integrator is node is considered, where the integrator 

stores the system information but lacks any causal outgoing connections. The information storage capacity in 

this node will be higher than any other node due to its increased alphabet. If this integrator node encodes a 

copy operator, its information decay will result in the highest integrated mutual information while lacking any 

causal potential. In the systems considered here, this situation cannot occur. That is, for undirected systems 

information flow has equal potential along an edge. Any causal effect a node has in undirected dynamical 

systems will percolate to all neighbors of a node. For directed graphs the information flow is not time 

symmetric as detailed balance cannot be ensured. Consequently, the use of forward mutual information 

𝐼(𝑠𝑖
𝑡0+𝑡: 𝑆𝑡0) may lead to false estimates of driver nodes in these cases. For undirected graphs, if there would 

exist a node with higher integrated mutual information, its causal impact will also be higher and as such it 

would be the driver node. The asymmetry of information flow, and the compound nature of both correlation 

and causation restricts the use of integrated information undirected graphs. 

In addition, the focus on short-time scales biases information processing to less constrained nodes. By 

measuring the system out-of-equilibrium, the system dynamics for the kinetic Ising model has the tendency 

to "freeze" the behavior of nodes as a function of increasing degree. For undirected systems, this assumption 

seems sensible as the higher causal potential for hubs forms at the same time a higher constraint for switching 

its state. The flip probability of node 𝑠𝑖  in the kinetic Ising model as a function of degree will tend to zero given 

that the neighborhood is congruent with the node's current state. Measuring the system in equilibrium will 

therefore result in nodes with higher degree to have lower information decay. In contrast, out-of-equilibrium 

https://doi.org/10.1016/j.physa.2022.126889
https://doi.org/10.1016/j.physa.2022.126889
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a node state will have lower variability and consequently less causal effect on the instantaneous system states. 

Therefore, the driver node identification through integrated mutual information is only valid for non-

equilibrium kinetic Ising spin dynamics with undirect network structures. Since the Ising spin dynamics falls 

within a larger universality class, such as (directed) percolation. This implies that the results from this study 

may apply to different dynamical systems sharing the same core assumptions. 

Systems of size at most 𝑛 = 12 were used. The size of the system was chosen due in order to provide high 

reliability of the probability distributions. In addition, larger graphs can be decomposed in various different 

network motifs (doi.org/10.1038/nrg2102).  is believed that these motifs form the "computational" buildings 

blocks for larger complex systems under the assumption of nearest neighbor interactions. That is, 

understanding the motifs would gain insights in how a macroscopic property emerges from local interactions. 

The aim of this study was to relate structural connectedness to dynamic importance; the exact nature or 

occurrence of motifs were not the focal point. In real-world systems, however, it is exactly the composition 

and interaction of these motifs that are vital to complex systems. Here, the motifs were implicit on the real-

world network and the generated structures. We leave it up to future work to map out the driver nodes of 

common network motifs in different dynamics and relate the structural importance to the dynamical 

importance. 

4.6. Conclusions 

Our results indicate that dynamic importance cannot necessarily be reliably inferred from network structural 

features alone, demonstrated here using kinetic Ising spin dynamics. The goal of this paper was to show that 

structural methods can provide unreliable estimates of the driver node in dynamical systems. The results from 

this study show that the common assumption of structurally central or well-connected nodes being 

simultaneously dynamically most important is not necessarily true. This implies that we cannot abstract away 

the dynamics of a dynamic system before inferring driver nodes. The proposed information theoretic metric, 

integrated mutual information (IMI), was better able identify the driver node for non-intervened dynamics in 

systems. Importantly, IMI does not require knowing the dynamics equations and/or the network structure of 

the system. It is instead calculated directly from a cross-section of time-series of the system without 

interventions. The proposed metric could potentially be useful in applications with rich data sets and where 

performing interventions are infeasible or impractical. 

 

5. General discussion, conclusions and next steps 

As demonstrated in this report, we must conclude that our initial working hypothesis could not be confirmed. 

That is, for now, it was not possible to establish a reliable method of predicting driver nodes as an inferential 
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tool to assess causal probability of biomarkers. However, we emphasize that even if no reliable method for 

inferring driver nodes would be found during the To_Aition project, this does not suggest that our efforts to 

construct networks were futile (e.g., as evidenced by the results of T2.1 to T2.3). The networks can still provide 

valuable insights for prediction tasks, provide insights into potential mediating or confounding pathways 

between morbidities, and provide network-level insights into plausible mechanisms (causal discovery, WP3). 

Our findings only imply that top driver nodes cannot be reliably inferred -- using the datasets that we have 

currently available. 

We also found that, if the datasets would have been much richer in the temporal domain (rich longitudinal 

data with higher numbers of repeated measures), that it would then indeed be possible to infer driver nodes 

(Section 4). It remains to be seen what would be the minimal requirements of a dataset in order to be able to 

infer driver nodes, but from that study it became at least clear to us that the data requirements would well 

exceed the properties of our current datasets (especially in the temporal domain). That is, a handful of ‘waves’ 

was not sufficient (not shown), and it seems that the number of measurements over time in a time-series 

dataset would be at least on the order of 100 (which matches the self-reported data that Fried et al. used to 

infer the network of the psychometrics dataset), but preferably more. 

Despite this negative result, we expect that causal discovery and causal inference techniques (WP3) will still 

be able to give mechanistic insights into comorbidities. For instance, while it may not be possible to infer ‘the’ 

driver node in a network, it might still be possible to identify a group of biomarkers that play a pivotal role in 

the pathways between morbidities. Within such an identified group of biomarkers we would perhaps not be 

able to tell which is more important than the others, but this is not needed if the goal is to give direction for 

further research and data gathering specifically focused on the identified biomarkers and the pathways that 

they may form. Finally, our results may give direction at a meta-level: namely, future data gathering efforts 

should be informed by algorithms such as ours to decide, for instance, if more effort is to be placed on 

including more subjects versus gathering rich time-series per subject, if the goal is to identify driver nodes. 

Our studies indicate several potential paths for further exploration, calling for the development of new 

methodologies or additional data collection and harmonization: 

Cross-sectional Data and Directionality. A key issue is the inherent limitation of cross-sectional data in 

revealing the directionality of causal relationships. For instance, even if we could discern a causal structure 

from cross-sectional data, it provides minimal information about the direction of these causal relationships. 

For example, with three variables, the same correlation network could result from multiple causal structures, 

such as confounding (A ← B → C), colliding (A → B ← C), or sequential (A → B → C or the reverse). As the 

network size increases, the number of corresponding causal network structures also rises exponentially. This 

situation is problematic because each causal network structure causes different impacts of simulated 
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interventions on the nodes, thereby leading to different driver node(s). 

Thus, one possible approach would be to enhance the datasets used for network construction and causal 

inference. Adding a temporal dimension could provide the most valuable enrichment, a strategy we're 

currently exploring. However, such strategies won't apply to the cross-sectional and longitudinal datasets used 

in TO_AITION, even if they effectively address the aforementioned inference limitations. 

Centrality Metrics for Hypergraphs. The discovery of synergistic associations leads to hypergraphs (detailed 

in this deliverable in Section 3), where edges can have a higher order than the usual pairwise edges. Given 

that hypergraphs are theoretically richer than pairwise networks, we initially hypothesized they would more 

accurately predict driver nodes. However, research into centrality metrics for hypergraphs is less extensive 

than for pairwise networks, and techniques for the latter can't directly apply to the former. The existing 

centrality metrics we have explored often make assumptions based on mathematical convenience or 

elegance. For example, they may analyze uniform sub-hypergraphs independently instead of a single 

heterogeneous hypergraph (containing multiple edge orders, such as pairs, triplets, quadruplets, etc.) and 

then aggregate the vector of node centralities. This approach limits the model because causal pathways in 

reality can likely cross edges of multiple orders. Another drawback is that all existing centrality metrics regard 

hyperedges as undirected, ignoring the directional nature of causal relationships. 

However, it's not straightforward to determine which edge orders should interact and under what conditions. 

For instance, the influence might depend on the overlap of two higher-order edges, or the type of multivariate 

association encoded by the edges. This challenge doesn't even consider the equally important problem of 

devising an efficient algorithm to compute the centrality metric. Discovering higher-order edges from data is 

already a demanding computational task, let alone computing paths of higher-order edges based on intricate 

conditions.  
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