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Executive Summary 

Identification of key driving variants and genes in a large range of cell types and tissues from GTEx 

and other similar expression quantitative trait loci (eQTL) datasets. While we hypothesize that an 

inflammatory component connects depression and cardiovascular disease, the exact biological 

mechanism and site is unknown. In this deliverable we executed molecular (expression and 

epigenomic) quantitative trait loci (molecular QTL, molQTL) analyses in cardiovascular disease 

patients in Athero-Express Biobank Study (AE) and Tampere Vascular Study (TVS).  

The QTLToolKit pipeline (github.com/swvanderlaan/QTLToolKit) was adapted and employed for 

cis-acting and trans-acting molQTL analysis; this state-of-the-art pipeline is based on QTLTools5 and 

TensorQTL which enables rapid parallelized analyses of thousands of samples. Here we present the 

development of the methods – which needed adaptation to work with plaque-derived data – and results 

from the AE and TVS. We studied the balance between missing gene counts per sample and the 

number of identified eQTLs in the AE. We discovered thousands of nominally associated eGenes and 

confirmed 951 eGenes after permutation testing. Sex-interaction analyses identified AOPEP where the 

same allele (G) has different effects between the sexes. Future research will focus on integrating 

plaque-derived molQTL results with summary statistics from depression, risk factor and 

cardiovascular disease (CVD) genome-wide association studies, as well as causal network inference. 

These analyses are geared at identifying genetic loci and driver genes overlapping CVD and depression 

and may point to prospective druggable targets and biomarkers of disease. 

 

  

https://github.com/swvanderlaan/QTLToolKit
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Report 

1. Introduction 

Key driving variants, which are derived from specific tissues and cells, identified in Task 1.3 and Task 
1.5, are used individually and in aggregate as instruments for Mendelian randomization. We aimed 
to investigate the causal relation between cardiovascular disease (CVD) and major depressive 
disorder (MDD) using summary statistics from genome-wide association studies (GWAS) of 
depression phenotypes, cardiovascular outcomes, relevant risk factors, and molecular and 
physiological biomarkers. This enables the examination of pleiotropic effects on gene regulation and 
transcription in CVD and MDD. Combining tissue-derived driving variants in this framework with 
diseases and intermediate traits, we aim to identify the causal path to disease. While we hypothesize 
that an inflammatory component connects depression and cardiovascular disease, the exact 
biological mechanism and site is unknown. Here we specifically tested whether this relation (between 
MDD and CVD) is mediated through atherosclerotic plaques. This will be informative for the selection 
of the proper cell and gene for follow-up experiments by TO_AITION partners or others. We utilize 
the plaque specific expression quantitative trait loci (eQTL) datasets we generated in the previous 
tasks (1.4/1.5).  
 

2. Objectives 

The main objective of these studies is to explore 1) the causal relation between major depressive 
disorder (MDD) and cardiovascular diseases (CVD), 2) to test for mediation through the plaque, and 
3) to assess the role of inflammatory components in the causal relation between MDD and CVD. 
 

3. Methods 

3.1. Study participants Athero-Express Biobank Study 

The Athero-Express Biobank Study (AE, approved and registered under number TME/C-01.18 and 
biobanknumber 22/088 entitled “Utrechts Cardiovasculair Cohort - The Second Manifestations of 
ARTerial disease Study (UCC-SMART/Athero-Express Biobank)” with study protocol 13-597) is an 
ongoing cohort study started in 20026 and includes patients undergoing arterial endarterectomy 
surgery in the University Medical Center Utrecht (Utrecht, The Netherlands) and the St. Antonius 
Hospital Nieuwegein (Nieuwegein, The Netherlands). The study design was described before6. Briefly, 
blood and plaque samples are obtained during surgery, and routinely stored at ‐80°C and plaque 
material is used for standardized (immuno)histochemical analysis8. Extensive data on clinical 
outcome up to 3 years after surgery, baseline clinical characteristics, medication use, and (prior) 
medical and family history are recorded. For this study we only included carotid endarterectomy 
(CEA) patients. The AE was approved by the respective hospitals’ Ethics Committees and follows the 
European and national guidelines regarding data security and GDPR. Only patients providing written 
informed consent are included and the study conforms to the Declaration of Helsinki.  
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3.2. DNA extraction, genotyping and imputation 

We genotyped the AE in three separate, but consecutive experiments. In short, DNA was extracted 
from EDTA blood or (when no blood was available) plaque samples (regardless of arterial source) of 
1,858 consecutive patients from the Athero-Express Biobank Study and genotyped in 3 batches. For 
the Athero-Express Genomics Study 1 (AEGS1) 891 patients (602 males, 262 females, 27 unknown 
sex), included between 2002 and 2007, were genotyped (440,763 markers) using the Affymetrix 
Genome-Wide Human SNP Array 5.0 (SNP5) chip (Affymetrix Inc., Santa Clara, CA, USA) at Eurofins 
Genomics(www.eurofinsgenomics.eu/, formerly known as AROS). For the Athero-Express Genomics 
Study 2 (AEGS2) 954 patients (640 makes, 313 females, 1 unknown sex), included between 2002 and 

2013, were genotyped (587,351 markers) using the Affymetrix AxiomⓇ GW CEU 1 Array (AxM) at the 
Genome Analysis Center (www.helmholtz-muenchen.de). The two first batches, AEGS1 and AEGS2, 
were described before8,9. For the Athero-Express Genomics Study 3 (AEGS3) 658 patients (448 males, 
203 females, 5 unknown sex), included between 2002 and 2016, were genotyped (693,931 markers) 
using the Illumina GSA MD v1 BeadArray (GSA) at Human Genomics Facility, HUGE-F 
(glimdna.org/index.html). All experiments were carried out according to OECD standards. We used 
the genotyping calling algorithms as advised by Affymetrix (AEGS1 and AEGS2) and Illumina (AEGS3): 
BRLMM-P, AxiomGT1, and Illumina GenomeStudio respectively. 
 
After genotype calling, we adhered to community standard quality control and assurance (QCA) 
procedures of the genotype data from AEGS1, AEGS2, and AEGS310. Samples with low average 
genotype calling and sex discrepancies (compared to the clinical data available) were excluded. The 
data was further filtered per sample set on 1) individual (sample) call rate > 97%, 2) SNP call rate > 
97%, 3) minor allele frequencies (MAF) > 3%, 4) average heterozygosity rate ± 3.0 s.d., 5) relatedness 
(pi-hat > 0.20), 6) Hardy–Weinberg Equilibrium (HWE p < 1.0×10−3), and 7) Monomorphic SNPs (< 
1.0×10−6).  After QCA 2,493 samples remained, 108 of non-European descent/ancestry, and 156 
related pairs.  These comprise 890 samples and 407,712 SNPs in AEGS1, 954 samples and 534,508 
SNPs in AEGS2, and 649 samples and 534,508 SNPs in AEGS3 remained.  
 
Before phasing using SHAPEIT2, data was lifted to genome build b37 using the liftOver tool from UCSC 
(genome.ucsc.edu/cgi-bin/hgLiftOver). Finally, data was imputed with 1000G phase 3, version 5 and 
HRC release 1.1 as a reference using the Michigan Imputation Server 
(imputationserver.sph.umich.edu/)11. These results were further integrated using QCTOOL v2, where 
HRC imputed variants are given precedence over 1000G phase 3 imputed variants. After imputation 
we merge dataset and re-evaluated the quality and relatedness of samples. This resulted in a final 
list of 2,124 samples of good quality (Figure 1), including family relations of which we randomly chose 
1 for downstream analyses leaving 2,060 unique samples. We also re-evaluated the ancestral 
background and determined that 33 are from non-European ancestry applying PCA and using data 
from the 1000G phase 3.  

http://www.eurofinsgenomics.eu/
http://www.helmholtz-muenchen.de/
http://glimdna.org/index.html
https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://imputationserver.sph.umich.edu/
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Figure 1: Overlap of AEGS1, AEGS2 and AEGS3 with the whole Athero-Express Biobank Study. 

 

3.3. RNA isolation, transcriptional profiling and preprocessing 

A total of 700 segments were selected from patients who were included in the study between 2002 
and 2016. The RNA isolated from the archived advanced atherosclerotic lesion is fragmented. We 
have ultimately employed the CEL-seq2 method7. CEL-seq2 yielded the highest mappability reads to 
the annotated genes compared to other library preparation protocols. The methodology captures 3’-
end of polyadenylated RNA species and includes unique molecular identifiers (UMIs), which allow 
direct counting of unique RNA molecules in each sample.  
Libraries were sequenced on the Illumina Nextseq500 platform; a high output paired-end run of 
2 × 75 bp was performed (Utrecht Sequencing Facility). The reads were demultiplexed and aligned to 
human cDNA reference (Ensembl 84) using the BWA (0.7.13). Multiple reads mapping to the same 
gene with the same unique molecular identifier (UMI, 6bp long) were counted as a single read. The 
raw read counts were corrected for UMI sampling (corrected_count=-4096*(ln(1-
(raw_count/4096)))), normalized for sequencing depth and quantile normalized (core scripts can be 
found in github.com/mmokry/bulkCEL-seq2 and github.com/mmokry/seurat_meets_bulk_AE). We 
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have detected a median of 19.501 (SD = 5.874) genes per sample with at least one unique read and 
discarded samples (n=46) with less than 9,000 detected genes from further analysis.  

3.3.1. Gene quality control 

Gene exclusion was performed in the Python package pandas. The UMI corrected RNAseq count 
and corresponding hg19 biomart gene information were loaded into a dataframe. Non-protein 
coding genes were excluded as well as those lying on non-standard (alternative) chromosome. UMI-
corrected counts reported as infinite float values were replaced by the largest observed finite count 
value. Next, a sweep over a missingness threshold from 10% to 100% in steps of 10% was conducted, 
and a separate gene dataset was prepared for each threshold. The filter is applied by removing genes 
with zero counts for more than the threshold-portion of samples. Next, TMM normalization 
(Robinson 2010) as provided by the conorm package and inverse normal transform (INT) 
normalization using the scipy.stats package. A comparison of counts per missingness threshold 
is reported in Table 1. A flow diagram of sample and gene quality assessment is given in  
Figure 2. 
 

Table 1: Final gene counts given different missingness thresholds after gene quality control. 

Threshold 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Final count 10,006 11,651 12,710 13,620 14,358 15,057 15,682 16,258 17,052 18,462 

 

 
 
Figure 2: Flow diagram of sample and gene quality assessment. 

 

3.3.2. Sample quality control 

For sample covariates and subsequent sample exclusion, 2 genetics PC’s and 100 PC’s expression 
were calculated. For expression, randomized truncated PCA estimation8 was used due to the large 
dataset. For the first 2 expression covariation, the sample Mahalanobis distance was calculated, and 
samples below the Chi2 (n=3, alpha=0.95) threshold were selected. Then a sweep over the amount 
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of included expression PCs was performed from n=0 to 100 components and each total (2+n) 
covariates was saved to a different file.  
 

3.3.3. Missingness threshold and covariate count selection and cis/trans expression-QTL mapping 

QTLtools8 was used to select the missingness threshold (10-100%) and expression covariate 
counts (0-100) from all generated combinations for subsequent analysis. For this, SNPs were filtered 
on MAF larger than 0.03 and INFO score larger than 0.4 and stored as VCF file as required for 80% 
power. QTLtools was run in cis permutation mode with a window of 1Mb and the amount of gene-

level and genome-wide level results from the permutation test adjusted p-values was determined. 
Here it was found that the amount of genome-wide significant results flattens at a missingness value 
of 50%, where then a peak is found for 45 expression covariates. Plots of significant hits are shown 
in Figure 3.  
For the final cis- and trans-molQTL mapping we employed the TensorQTL9 package on an Nvidia 
RTX6000 GPU using the previously determined missingness threshold and number of expression 
covariates and 10 genetic PCs for the eQTL analyses, and only genetic PCs for the molQTL analyses. 
For final QTL mapping, VCF files were converted to PLINK10 BED file format as required by 

TensorQTL. 
 

 
Figure 3: Missingness threshold and covariate counts selection.  
Total significant counts (p < 0.05) are shown in gray and the right axis and genome wide significant hits (p < 
0.05/ngenes) are shown in black and the left axis. 

 

3.4. Genome-wide association studies summary statistics 

Genome-wide association studies summary statistics were leveraged from publicly available 
datasets. Mining these datasets uncovered a plethora of challenges. Not all GWAS summary statistics 
are available for download, can be requested by the authors, and/or only provide the lead single 
nucleotide polymorphisms (SNPs). Other issues included ambiguous reports of sample size, genome 
build, or missing information such as standard errors and effect sizes. We were able to partly resolve 
these issues by using a custom pipeline (gwas2cojo, available here 
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https://github.com/CirculatoryHealth/gwas2cojo), which automates tasks such as genome build 
liftover and SNP alignment and provides a uniform file format. This significantly decreased workload 
and improved downstream applications. 
 

 
 
Figure 4: Parsing and harmonizing GWAS summary statistics.  
We collected 46 GWAS datasets focusing on data from individuals of European descent. When needed we converted data 
to genome build 37, and checked that variants were present in 1000G phase 311. Lastly, all data were transformed into a 
uniform file format. 

 
Genome-wide association studies summary statistics were selected by means of relevance, ‘latest 
and the largest’ and publicly available, easily accessible and/or open-source data was given priority. 
Incomplete summary statistics were omitted during this phase. A custom Python17pipeline (see Data 
availability) was used to pre-process GWAS summary statistics and primary quality control. This 
primary control step was used to uniformly transform GWAS summary statistics because of a lack of 
a standardized format. In short, our custom pipeline was built to automate effect/other allele 
alignment with 1000 Genomes phase 318 release with a maximum frequency distance of 25%, 
maximum minor allele frequency (MAF) of 45% for ambivalent variants and lifting genomic positions 
to hg19 where needed. In preparation for GWAS alignment, dbSNP153 (GCF1405) was referenced to 
translate MEGASTROKE rs-ids to genetic positions and to augment AF, ASD, NICM, and TAGC (GWAS 
abbreviations are listed in Table 2) with allele frequency information. Standard errors for HF and 
NICM were recovered as follows:  

Z=sign(beta)*abs(qnorm(p/2)) 

SE=beta/Z 

Where beta is the effect size, P is the P-value of association which is quantile normalized using the 
qnorm-function in R. SE is the standard error calculated by dividing the beta by Z. Effect sizes were 
calculated from odds ratios as beta = log(OR) for BIP, insomnia, IBD, and MDD before entering our 
custom pipeline. 
The final selection was grouped into one of three categories: atherosclerotic disease and other 
cardiovascular disease (12), risk factors (14), and other (20). Data were further processed with 
MAGMA19 (version 1.07) for genome-wide analysis, annotation and characterization of significant 
hits via the FUMA20 web platform (version 1.3.6, accessed June 2020, https://fuma.ctglab.nl/). We 
applied genome-wide significance (P < 5 × 10−8) and linkage disequilibrium (r2 > 0.05) filtering for 
clumping of independent loci within 1000 kb of the lead variant and included only variants with MAF 
>1%. For SVS, logOnset, EvrSmk and SVD no SNP associations below the genome-wide significance 
threshold we found. Therefore, lead variant discovery was performed with a relaxed threshold of 
5 × 10−6.  

https://github.com/CirculatoryHealth/gwas2cojo
https://fuma.ctglab.nl/
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Table 2: GWAS summary statistics used. 
We applied GWAS2COJO for the Slenders L et al paper (EHJ open 2022). GWAS2COJO is a software to GWAS summary statistics into one common format (for COJO-

analyses) using either rsIDs or chr:bp as identifiers and aligning results with a common reference (in this 1000G phase 3).  
TRAIT 
NUMBER 

TRAIT OR DISEASE ABBREVIATION CATEGO
RY 

SAMPLE 
SIZE 

CONSORTIUM PMID REFERENCE JOURNAL ANCESTRY 

1 Coronary Artery Disease CAD AD 154,654  CARDIoGRAMplusC4D
+UKBB 

287149
75 

Nelson et. al, 20173 nature genetics European 

2 Coronary Artery 
Calcification 

CAC AD 15,523    235616
47 

Van Setten et al. 20135 Atherosclerosis European 

3 Carotid Intima-Media 
Thickness 

cIMT AD 71,128  CHARGE 305101
57 

Franceschini et al. 20186 nature communication Multi 
ancestry 

4 Plaque Presence Plaque AD 48,434  CHARGE 305101
57 

Franceschini et al. 20186 nature communication Multi 
ancestry 

5 Cardio- Embolic stroke CES CM 521,612  MEGASTROKE 295313
54 

Malik et al., 20194 nature genetics European 

6 Any stroke AS CM 446,696  MEGASTROKE 295313
54 

Malik et al., 20194 nature genetics European 

7 Any Ischemic stroke IS CM 446,696  MEGASTROKE 295313
54 

Malik et al., 20194 nature genetics European 

8 Small Vessel Disease SVD CM 446,696  MEGASTROKE 295313
54 

Malik et al., 20194 nature genetics European 

9 Large Artery Stroke LAS CM 446,696  MEGASTROKE 295313
54 

Malik et al., 20194 nature genetics European 

10 Atrial Fibrillation AF CM 588,190    298920
15 

Roselli et al., 201844 nature genetics Multi 
ancestry 

11 Heart Failure HF CM 488,010    305867
22 

Aragam et al. 201845 Circulation European 

12 Nonischemic 
Cardiomyopa thy 

NICM CM 488,010    305867
22 

Aragam et al. 201845 Circulation European 

13 High-Density Lipoprotein HDL CM 1,888,577  GLGC 240970
68 

Global lipids Genetiscs Consortium, 
201330 

nature genetics European 

14 Low-Density Lipoprotein LDL CM 1,888,577  GLGC 240970
68 

Global lipids Genetiscs Consortium, 
201330 

nature genetics European 

15 Total Cholesterol TC CM 1,888,577  GLGC 240970
68 

Global lipids Genetiscs Consortium, 
201330 

nature genetics European 

16 Triglycerides TG CM 1,888,577  GLGC 240970
68 

Global lipids Genetiscs Consortium, 
201330 

nature genetics European 

17 Pulse Pressure PP CM 1,050,906    302246
53 

Evangelou et al., 201846 nature genetics European 

18 Diastolic Blood Pressure DBP CM 1,050,906    302246
53 

Evangelou et al., 201846 nature genetics European 

19 Systolic Blood Pressure SBP CM 1,050,906    302246
53 

Evangelou et al,. 201846 nature genetics European 

20 Cigarettes per Day CpD CM 74,035  TAG 204188
90 

The Tobacco and Genetics 
Consortium, 201047 

nature genetics European 

21 Ever smoked EvrSmk CM 74,035  TAG 204188
90 

The Tobacco and Genetics 
Consortium, 201047 

nature genetics European 
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22 Onset Smoking logOnset CM 74,035  TAG 204188
90 

The Tobacco and Genetics 
Consortium, 201047 

nature genetics European 

23 Former Smoker FrmrSmk CM 74,035  TAG 204188
90 

The Tobacco and Genetics 
Consortium, 201047 

nature genetics European 

24 Type 2 Diabetes T2D CM 898,130  DIAGRAM 302979
69 

Mahajan et al., 201648 nature genetics Multi 
ancestry 

25 Type 2 Diabetes adjusted 
for BMI 

T2DadjBMI CM 898,130  DIAGRAM 302979
69 

Mahajan et al., 201648 nature genetics European 

26 Body Mass Index BMI CM 693,529  GIANT 301248
42 

Yengo et al., 201849 Human Molecular 
Genetics 

European 

27 Alzheimer's Disease AD Other 455,258    306172
56 

Jansen et al., 201950 nature genetics European 

28 Autism Spectrum Disorder ASD Other 46,350  PGC 308045
58 

Grove et al., 201951 nature genetics European 

29 Bipolar Disorder BIP Other 198,882  PGC 310437
56 

Stahl et al., 201952 nature genetics European 

30 Depressive symptoms DS Other 298,420    270891
81 

Okbay et al., 201653 nature genetics European 

31 Educational Attainment EA Other 293,723    272251
29 

Okbay et al., 201654 nature genetics European 

32 Insomnia Insomnia Other 386,533    308045
65 

Jansen et al., 201850 nature genetics European 

33 Intelligence Quotient IQ Other 269,867    299420
86 

Savage et al., 201855 nature genetics European 

34 Major Depression 
Disorder 

MDD Other 480,359  PGC 297004
75 

Wray et al., 201856 nature genetics European 

35 Neuroticism Neuroticism Other 298,420    270891
81 

Okbay et al., 201653 nature genetics European 

36 Parkinson's Disease PD Other 1,456,306    317018
92 

Nalls et al.,201957 The Lancet. Neurology European 

37 Asthma Asthma Other 142,486    292738
06 

Demenais et al., 201858 nature genetics Multi 
ancestry 

38 Inflammatory Bowel 
Disease 

IBD Other 86,640    261929
19 

Liu et al., 201559 nature genetics Multi 
ancestry 

39 Breast Cancer BC Other 256,123    290596
83 

Michailidou et al., 201760 nature Multi 
ancestry 

40 Prostate Cancer PrCa Other 140,306    298920
16 

Schumacher et al., 201861 nature genetics European 

41 Amyotrophic Lateral 
Sclerosis 

ALS Other 43,259    274553
48 

van Rheenen et al., 201662 nature genetics European 

42 Femoral Neck Bone Mass 
Density 

FNBMD Other 53,236  GEFOS 263677
94 

Zheng et al., 201563 nature European 

43 Forarm Bone Mass 
Density 

FABMD Other 53,236  GEFOS 263677
94 

Zheng et al., 201563 nature European 

44 Lumbar Spine Bone Mass 
Density 

LSBMD Other 53,236  GEFOS 263677
94 

Zheng et al., 201563 nature European 

45 Height Height Other 693,529  GIANT 301248
42 

Yengo et al., 201849 Human Molecular 
Genetics 

European 
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46 Subjective Well-Being SWB Other 298,420    270891
81 

Okbay et al., 201653 nature genetics European 

47 Coronary Artery 
Calcification 

CHARGE_CAC_E
A_AA 

AD 35,776  
  

Kavousi et al., 202264 medRxiv (accept. nature 
genetics) 

Multi 
ancestry 

48 Type 2 Diabetes T2D_EU CM 442,817  
 

302979
69 

Mahajan et al., 201648 nature genetics European 

References used: 3. Nelson, C. P. et al. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat. Genet. 49, 1385–1391 (2017).; 4. Malik, R. et al. Multiancestry genome-wide association study of 520,000 
subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 50, 524–537 (2018).; 5. van Setten, J. et al. Genome-wide association study of coronary and aortic calcification implicates risk loci for coronary artery disease and 
myocardial infarction. Atherosclerosis 228, 400–405 (2013).; 6. Franceschini, N. et al. GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes. Nat. Commun. 9, 5141 (2018).; 
30. Global Lipids Genetics Consortium. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1283 (2013).; 44. Roselli, C. et al. Multi-ethnic genome-wide association study for atrial fibrillation. Nat. Genet. 50, 1225–
1233 (2018).; 45. Aragam, K. G. et al. Phenotypic Refinement of Heart Failure in a National Biobank Facilitates Genetic Discovery. Circulation (2018) doi:10.1161/CIRCULATIONAHA.118.035774.; 46. Evangelou, E. et al. Genetic analysis of over 1 
million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 50, 1412–1425 (2018).; 47. Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat. 
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4. Results 

4.1. Identification of cis-acting eQTLs in the Athero-Express Biobank Study 

After extensive quality control we included 624 samples with overlapping carotid plaque gene 
expression and genetic data for cis-acting eQTL analyses. A nominal analysis identified 14,284 unique 
eQTL-eGene pairs at p < 0.05. Next, we performed permutation testing (1000x) and identified 951 
cis-acting eQTLs across all 22 chromosomes at pemperical < 0.05 (Figure 5).  
 

 
Figure 5: Genome-wide cis-acting eQTL results at pemperical < 0.05. 

 

4.2. Effects of MDD associated loci on plaque derived gene expression 

We tested the association of 6 known MDD loci with gene expression for over 14,000 plaque derived 
genes. Out of 14356 genes tested, the 6 MDD loci associated with 610 genes at 𝑝 ≤ 0.05 – which is 
less than expected by chance. The most significant was ENSG00000186918 (𝛽 = 0.587 ± 0.146 s.e., 𝑝 
= 5.56x10-5).  
 
4.3. Effects of cis-acting eQTLs in plaque on the risk of coronary artery disease 

Next, we tested the association of each variant associated with plaque derived genes expression on 
the risk of coronary artery disease using GWAS summary statistics. Out of the 14,356 genes tested, 
718 were nominally associated to CAD (𝑝 ≤ 0.05). The most significant association was for 
ENSG00000131095 (𝛽 = -0.078 ± 0.020 s.e., 𝑝 = 9.29x10-5).  
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4.4. Mediation analyses of MDD loci on CAD through plaque derived gene expression 

Central to the TO_AITION project is the notion that MDD may be causing CAD, or vice versa. A key 
question is whether this causal effect may be mediated directly through atherogenesis, i.e. 
atherosclerotic plaques. Thus, we assessed whether the effects of MDD associated loci are mediated 
through atherosclerotic plaques on CAD. Out of 14,356 genes tested, 38 are nominally associated 
with both MDD and CAD. We observed a negative effect of plaque mediated MDD associated loci on 
CAD risk (𝑟2 = 0.0289), albeit nominally significant (𝑝 = 0.05, Figure 6). Our per plaque derived gene 
interaction analyses revealed no significant association (Table 3).  

 

Figure 6: Plaque mediated association between MDD and CAD. 
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Table 3: Plaque derived gene expression mediation analysis of MDD (exposure) associate loci (6 in total) with CAD (outcome).  
b_em: effect size exposure; se_em: standard error exposure; p_em: p-value exposure; nsnp_em: number of SNPs tested for exposure; b_mo: effect size outcome; se_mo: 
standard error outcome; p_mo: p-value outcome; nsnp_mo: number of SNPs tested for outcome; b_in: effect size interaction; se_in: standard error interaction; p_in: p-value 
interaction. 

m b_em se_em p_em nsnp_em b_mo se_mo p_mo nsnp_mo b_in se_in p_in 

ENSG00000106628 -0.814 0.279 3.49E-03 6 -0.040 0.016 0.013 13 0.033 0.018 0.068 

ENSG00000119231 -0.209 0.082 0.010 6 0.104 0.038 5.63E-03 18 -0.022 0.012 0.069 

ENSG00000186566 -0.499 0.202 0.013 5 0.063 0.022 4.09E-03 18 -0.032 0.017 0.070 

ENSG00000131095 0.443 0.215 0.039 6 -0.078 0.020 9.29E-05 16 -0.035 0.019 0.075 

ENSG00000157954 -0.428 0.153 5.21E-03 6 -0.058 0.024 0.016 19 0.025 0.014 0.079 

ENSG00000183814 -0.755 0.306 0.014 6 -0.040 0.015 0.010 13 0.030 0.018 0.086 

ENSG00000146909 -0.195 0.090 0.030 6 0.102 0.034 2.44E-03 26 -0.020 0.012 0.088 

ENSG00000167526 0.169 0.080 0.035 6 0.143 0.046 1.92E-03 17 0.024 0.014 0.092 

ENSG00000008869 -0.514 0.210 0.014 6 0.042 0.017 0.013 22 -0.021 0.013 0.093 

ENSG00000166199 0.604 0.306 0.048 6 -0.050 0.015 6.17E-04 13 -0.030 0.018 0.097 

ENSG00000176209 -0.377 0.158 0.017 6 0.052 0.021 0.013 23 -0.020 0.012 0.098 

ENSG00000111229 -0.403 0.159 0.011 6 -0.050 0.022 0.026 21 0.020 0.013 0.108 

ENSG00000154518 0.382 0.161 0.018 5 -0.101 0.043 0.020 7 -0.039 0.024 0.112 

ENSG00000213337 -0.654 0.299 0.029 6 -0.032 0.013 0.012 20 0.021 0.013 0.113 

ENSG00000119392 -0.708 0.275 0.010 6 0.058 0.027 0.033 6 -0.041 0.026 0.116 

ENSG00000121075 0.565 0.237 0.017 6 -0.035 0.016 0.027 17 -0.020 0.013 0.121 

ENSG00000151388 0.687 0.313 0.028 6 -0.033 0.014 0.017 15 -0.023 0.015 0.123 

ENSG00000136247 0.379 0.178 0.033 6 -0.063 0.026 0.014 14 -0.024 0.016 0.123 

ENSG00000158477 0.719 0.335 0.032 6 -0.030 0.013 0.018 16 -0.021 0.014 0.130 

ENSG00000077157 0.285 0.118 0.015 6 0.077 0.037 0.039 13 0.022 0.015 0.134 

ENSG00000089177 -0.503 0.252 0.046 6 -0.037 0.015 0.012 19 0.019 0.013 0.135 

ENSG00000133216 0.315 0.148 0.033 6 -0.076 0.033 0.021 12 -0.024 0.016 0.136 

ENSG00000132405 0.533 0.265 0.044 6 0.044 0.018 0.014 12 0.023 0.016 0.138 

ENSG00000141505 0.362 0.147 0.014 6 -0.026 0.013 0.045 18 -0.009 0.006 0.138 

ENSG00000187824 0.359 0.168 0.032 6 -0.061 0.027 0.023 14 -0.022 0.015 0.138 

ENSG00000204540 0.724 0.355 0.041 6 0.034 0.014 0.017 11 0.025 0.017 0.139 
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ENSG00000127663 0.219 0.110 0.045 6 -0.069 0.029 0.016 23 -0.015 0.010 0.142 

ENSG00000255398 0.656 0.286 0.022 6 -0.029 0.014 0.045 17 -0.019 0.013 0.152 

ENSG00000105364 -0.316 0.140 0.024 6 0.051 0.025 0.043 22 -0.016 0.011 0.153 

ENSG00000174306 -0.239 0.105 0.023 6 -0.107 0.053 0.045 9 0.026 0.018 0.153 

ENSG00000125965 -0.687 0.307 0.025 6 0.025 0.013 0.047 17 -0.017 0.012 0.158 

ENSG00000138069 0.310 0.149 0.038 6 -0.051 0.024 0.035 20 -0.016 0.011 0.160 

ENSG00000198912 0.273 0.137 0.047 6 0.059 0.027 0.031 20 0.016 0.012 0.166 

ENSG00000100095 -0.645 0.324 0.046 6 -0.030 0.014 0.034 13 0.019 0.014 0.169 

ENSG00000143436 0.467 0.233 0.045 6 -0.031 0.016 0.045 22 -0.015 0.011 0.181 

ENSG00000160856 -0.587 0.289 0.043 6 -0.026 0.013 0.050 18 0.015 0.011 0.184 

ENSG00000180953 0.430 0.219 0.049 6 -0.032 0.016 0.047 19 -0.014 0.010 0.188 
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5. Future perspectives 

We identified 610 plaque genes nominally effected by 6 MDD associated loci, 38 of which at p < 
0.005. We also found 718 plaque genes nominally associated with CAD risk, 75 at p < 0.005. 
Mediation analyses revealed 38 genes were nominally associated with both 6 MDD loci, and CAD risk, 
but mediation testing revealed no significant effects.  
We will further intergrate these results with the other plaque derived data, including our single-cell 
datasets to identify per genes specific cells involved. Likewise, we will execute network analyses to 
determine driver nodes associated with plaque-derived gene expression on CAD risk, and MDD loci 
on plaque gene regulatory networks. We will further expand these analyses by studying the 
mediating effects of blood-derived gene expression on MDD and CAD risk. Combining tissue-derived 
driving variants in this framework with diseases and intermediate traits, we will identify tissues on 
the causal path to disease, and as such be informative for the selection of the proper cell for follow-
up experiments in WP4. These analyses are planned for Q3-Q4 of 2023 in collaboration with UVA. 
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Data security, availability and sharing 

The input data for these analyses are available among the collaborating partners, either through the 
secure platform developed by UOI, or privately between the respective partners (see List of 
Beneficiaries). The Athero-Express Biobank Study data is publicly available, but upon request, 
through DataverseNL (https://doi.org/10.34894/4IKE3T). Likewise, the codes used for this project are 
available here: https://github.com/CirculatoryHealth/molqtl (privately, as the project is ongoing). 
This project falls under the Data Management Plan of the Athero-Express Biobank Study attached as 
a separate appendix and approved by the Information Security Officer and Data Management Officer 
of the UMC Utrecht. 
 
As mentioned in section 3.1 the Athero-Express Biobank Study (AE, approved and registered under 
number TME/C-01.18 and biobanknumber 22/088 entitled “Utrechts Cardiovasculair Cohort - The 
Second Manifestations of ARTerial disease Study (UCC-SMART/Athero-Express Biobank)” with study 
protocol 13-597) is an ongoing cohort study started in 20026 and includes patients undergoing 
arterial endarterectomy surgery in the University Medical Center Utrecht (Utrecht, The Netherlands) 
and the St. Antonius Hospital Nieuwegein (Nieuwegein, The Netherlands). The studies were approved 
by the respective hospitals’ Ethics Committees and follow the European and national guidelines 
regarding data security and GDPR. Only patients providing written informed consent are included 
and the studies conform to the Declaration of Helsinki. 
 

  

https://doi.org/10.34894/4IKE3T
https://github.com/CirculatoryHealth/molqtl
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